首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice in the tropics for which genetic resistance in the host plants is the only effective solution. This study aimed at identification of resistance gene combinations effective against Xoo isolates and fingerprinting of the Xoo isolates of Andaman Islands (India). Here, we report the reaction of 21 rice BB differentials possessing Xa1 to Xa21 genes individually and in different combinations to various isolates of pathogen collected from Andaman Islands. Pathological screening results of 14 isolates revealed that among individual genes tested across 2 years, Xa4, Xa7 and Xa21 conferred resistance reaction across all isolates, whereas among combinations, IRBB 50 (Xa4 + xa5), IRBB 52 (Xa4 + Xa21) and IRBB 60 (Xa4 + xa5 + xa13 + Xa21) conveyed effective resistance against tested isolates. The nature of genetic diversity among four isolates selected on the basis of geographical isolation in the islands was studied through DNA finger printing. The RAPD primers S111, S119, S1117, S1109, S1103, S109 and S105 were found to be better indicators of molecular diversity among isolates than JEL primers. The diversity analysis grouped 14 isolates into three major clusters based on disease reaction wherein isolate no. 8 was found the most divergent as well as highly virulent. The remaining isolates were classified into two distinct groups. The importance of the study in the context of transfer of resistance gene(s) in the local cultivars specifically for tropical island conditions is presented and discussed.  相似文献   

2.
Marker assisted selection was employed to pyramid three bacterial blight resistance genes Xa21, xa13 and xa5 into high yielding susceptible rice cultivars ADT43 and ADT47. With the assistance of PCR markers, homozygous and heterozygous genotypes were identified in F2 generation of two crosses (ADT43 × IRBB60 and ADT47 × IRBB60) and goodness of fit was tested. Eighty nine plants from F3 generation of ADT43 × IRBB60 were also screened for resistance genes. The genotypes carrying resistance genes in different combinations were identified. The pyramided lines showed a wider spectrum and higher level of resistance against two Xoo isolates under field conditions.  相似文献   

3.

Absence of resistance/tolerance against bacterial leaf blight (BLB), incited by Xanthomonas oryzae pv. oryzae, in famous basmati varieties is one of the main reason for BLB epidemic in Punjab in 2007–2008. For developing resistance against BLB, the response of 26 IRBB lines of IRRI including 10 near isogenic lines (NILs) and 16 gene pyramids carrying two to five resistance genes (Xa series) was evaluated against 61 indigenous Xoo isolates under artificial inoculation field conditions. None of the NILs or gene pyramid provides complete protection against all the isolates. However, Xa21 and xa13 were found resistant against the majority of Xoo isolates, followed by Xa14 and Xa7. Of the 16 gene pyramids used in this study, IRBB-54 (Xa5 + Xa21), IRBB-55 (Xa13 + Xa21) followed by IRBB-58 (Xa4 + Xa13 + Xa21) were found effective against the majority of the Xoo isolates. These resistance genes (individually and in combinations) can be incorporated for the improvement of basmati rice cultivars cultivated in Punjab province of Pakistan. Effectiveness of gene combination supports the strategy of pyramiding appropriate resistance genes. Newly identified resistant genes may also be evaluated for achieving broad spectrum resistance against more Xoo isolates of the area.  相似文献   

4.
Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo), a destructive disease of rice. Altogether, 96 isolates of Xoo were collected from 19 rice growing districts of Bangladesh in irrigated and rainfed seasons during 2014 to assess pathotypic variation. Pathotypic analyses on a set of 12 Near Isogenic Lines (NILs) of rice containing resistance genes viz. Xa1, Xa2, Xa3, Xa4, Xa5, Xa7, Xa8, Xa10, Xa11, Xa13, Xa14 and Xa21 and two check varieties IR24 and TN1 by leaf clip-inoculation technique. A total of 24 pathotypes were identified based on their virulence patterns on NILs tested. Among these, pathotypes VII, XII, and XIV considered as major, containing maximum number of isolates, (9.38% each) frequently distributed in North to Mid-Eastern districts of Bangladesh. Most virulent pathotype I recorded from Habiganj and Brahmanbaria. This pathotypic variation explained the pathogenic relatedness of X. oryzae pv. oryzae populations from diverse geographic areas in Bangladesh.  相似文献   

5.
Bacterial blight (BB) is a serious disease of rice in India. We have used molecular marker-assisted selection in a backcross breeding program to introgress three genes (Xa21, xa13, and xa5) for BB resistance into Triguna, a mid-early duration, high yielding rice variety that is susceptible to BB. At each generation in the backcross program, molecular markers were used to select plants possessing these resistance genes and to select plants that have maximum contribution from the Triguna genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. Plants containing the two-gene combination, Xa21 and xa13, were found to exhibit excellent resistance against BB. Single plant selections for superior agronomic characteristics were performed on the progeny of these plants, from BC3F3 generation onwards. The selected plants were subjected to yield trials at the BC3F8 generation and were found to have a significant yield advantage over Triguna. The newly developed lines are being entered into national multi-location field trials. This work represents a successful example of the application of molecular marker-assisted selection for BB resistance breeding in rice.  相似文献   

6.
Bacterial leaf blight (BB) of rice is a major disease limiting rice production in several rice growing regions of the world. The pathogen, Xanthomonas oryzae pv oryzae, causing the disease is highly virulent to rice crops and is capable of evolving new races. Breeding efforts to incorporate single BB resistant gene often leads to resistance breakdown within a short period. To overcome such breakdown of resistance and develop germplasm with durable disease resistance, we have introgressed three bacterial blight resistance genes, xa5, xa13, and Xa21 into a fine grain rice variety, Samba Mahsuri, using sequence tagged site (STS) markers linked to these genes. Since the efficiency of the STS markers linked to recessive genes to detect homozygotes is less than 100%, we adopted four different pyramiding schemes to minimize loss of recessive resistance genes in advanced backcross generations. Pyramiding scheme A in which a two-gene Samba Mahsuri pyramid line containing Xa21 and xa5 genes was crossed with the Samba Mahsuri line having xa13 gene alone was found to be most effective in preventing the loss of an important recessive gene xa13. We further demonstrated that there was no yield penalty due to pyramiding of multiple genes into the elite indica rice variety.  相似文献   

7.
Targeting xa13, a recessive gene for bacterial blight resistance in rice   总被引:2,自引:0,他引:2  
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases of rice worldwide. Thirty bacterial blight resistance (R) genes (21 dominant genes and 9 recessive genes) in rice have been identified. They are the main sources for the genetic improvement of rice for resistance to Xoo. However, little is known about the recessive R genes. To clone and characterize the recessive R genes, we fine-mapped xa13, a fully recessive gene for Xoo resistance, to a DNA fragment of 14.8 kb using the map-based cloning strategy and a series of sequence-based molecular markers. Sequence analysis of this fragment indicated that this region contains only two apparently intact candidate genes (an extensin-like gene and a homologue of nodulin MtN3) and the 5′ end of a predicted hypothetical gene. These results will greatly facilitate the isolation and characterization of xa13. Four PCR-based markers, E6a, SR6, ST9 and SR11 that were tightly linked to the xa13 locus, were also developed. These markers will be useful tools for the marker-assisted selection of xa13 in breeding programs.  相似文献   

8.
 An elite indica rice variety, ‘IR72’, was transformed with a cloned gene, Xa21, through particle bombardment. Molecular analysis of transgenic plants revealed the presence of a 3.8-kb EcoRV-digested DNA fragment corresponding to most of the Xa21 coding region and its complete intron sequence, indicating the integration of Xa21 into the genome of ‘IR72’. In the T1 generation, the transgene was inherited and segregated in a 3:1 ratio. After inoculation with the prevalent races 4 and 6 of Xanthomonas oryzae pv. oryzae (Xoo), T1 plants positive for the transgene were found to be resistant to bacterial blight (BB). We also observed that the level of resistance to race 4 of Xoo was higher due to the pyramiding of Xa21 and Xa4 present in ‘IR72’. Since the inactivation of the transgene Xa21 occurred in the two transgenic T1 plants, a larger progeny should be obtained for selecting homozygous line with a consistently higher level of resistance to the BB pathogen. Received: 13 October 1997 / Accepted: 21 October 1997  相似文献   

9.
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae [(Ishiyama) Swings et al. 1990] (Xoo), is a major rice disease of the second crop season in Taiwan. A total of 88 Xoo strains collected from 10 major rice cultivating areas in Taiwan from 1986, 1997, 2000, 2004, and 2011 were characterized by repetitive‐element PCR (REP‐PCR) fingerprinting and virulence analyses. Among the five genetic clusters identified by the pJEL1/pJEL2 (IS1112‐based) and REP1R‐Dt/REP2‐D [repetitive extragenic palindromic (REP)‐based] primer sets, clusters A, C and D contained Xoo strains from geographically distant regions, which suggests a high frequency of Xoo dispersal in Taiwan. The 88 Xoo strains were evaluated by inoculations on IRBB near‐isogenic lines and five Taiwan rice cultivars. A subset of 45 moderately or highly virulent strains were classified into 15 pathotypes by their compatible or incompatible reactions on IR24 and 12 IRBB near‐isogenic lines, each containing a single resistance gene. Analysis of molecular haplotypes and pathotypes revealed a partial relationship. IRBB5, IRBB21 and IRBB4 were incompatible with 96%, 96% and 73% of the strains, so xa5, Xa21 and Xa4 can recognize most of the Xoo strains in Taiwan and elicit resistance. In contrast, IRBB3 (Xa3), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13) and IRBB14 (Xa14) were susceptible to almost all of the 45 Xoo strains. Inoculation trials revealed significant differences in the susceptibility of five Taiwan cultivars to Xoo (from high to low susceptibility: Taichung Sen 10 >  IR24, Taichung Native 1 >  Taichung 192, Taikeng 9, Tainan 11). This study provides useful information for resistance breeding and the development of disease management strategies against bacterial blight disease of rice.  相似文献   

10.
Li ZK  Sanchez A  Angeles E  Singh S  Domingo J  Huang N  Khush GS 《Genetics》2001,159(2):757-765
The resistance of rice to its bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) has both qualitative and quantitative components that were investigated using three near-isogenic line sets for four resistance (R) genes (Xa4, xa5, xa13, and Xa21) and 12 Xoo races. Our results indicate that these two resistance components of rice plants were associated with the properties of the R genes. The qualitative component of the R genes was reflected by their large effects against corresponding avirulent Xoo races. The quantitative component of the R genes was their residual effects against corresponding virulent races and their epistatic effects, which together could lead to high-level resistance in a race-specific manner. Our results revealed important differences between the different types of R genes. Two R genes, Xa4 and Xa21, showed complete dominance against the avirulent Xoo races and had large residual effects against virulent ones. They acted independently and cumulatively, suggesting they are involved in different pathways of the rice defensive system. The third R gene, xa5, showed partial dominance or additivity to the avirulent Xoo races and had relatively small but significant residual effects against the virulent races. In contrast, xa13 was completely recessive, had no residual effects against the virulent races, and showed more pronounced race specificity. There was a strong interaction leading to increased resistance between xa13 and xa5 and between either of them and Xa4 or Xa21, suggesting their regulatory roles in the rice defensive pathway(s). Our results indicated that high-level and durable resistance to Xoo should be more efficiently achieved by pyramiding different types of R genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号