首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The larvae of Bittacidae, a cosmopolitan family in Mecoptera, have an interesting habit of spraying the body surface with soil through the anus after hatching, and each molts. The fine structure of Malpighian tubules, however, remains largely unknown in the larvae of Bittacidae to date. Here, we studied the ultrastructure of the larval Malpighian tubules in the hangingfly Terrobittacus implicatus (Huang & Hua) using scanning and transmission electron microscopy. The larvae of T. implicatus have six elongate Malpighian tubules at the junction of the midgut and hindgut. The tubule comprises a basal lamina, a single-layered epithelium, and a central lumen. The basal plasma membranes of the epithelial cells are conspicuously infolded and generate a labyrinth. The epithelium consists of two types of cells: large principal cells and scattered stellate cells. Mitochondria and cisterns of rough endoplasmic reticulum are numerous in the principal cells but are sparsely distributed in the stellate cells, indicating that the principal cells are active in transport. On the other hand, spherites are only abundant in the principal cells and are likely associated with the soil-spraying habit of the larvae.  相似文献   

2.
Ma  Na  Zhang  Yu-Xin  Yue  Chao 《Protoplasma》2021,258(1):59-69

The salivary glands of Panorpidae usually exhibit distinct sexual dimorphism and are closely related to the nuptial feeding behavior. In this study, the salivary glands of Neopanorpa longiprocessa were investigated using light microscopy and transmission electron microscopy. The salivary glands are tubular labial glands and consist of a scoop-shaped salivary pump, a common salivary duct, and a pair of salivary tubes. The male and female salivary glands are remarkably different in the bifurcation position of the common salivary duct and the length and shape of the secretory tubes. Compared with the simple female salivary glands, the male’s are more developed as their paired elongated salivary tubes can be divided into two parts, the glabrate anterior tube and the posterior tube with many secretory tubules. The ultrastructural study shows that the male salivary tubes have strong secretory function. The existence of different secretion granules indicates that there are some chemical reactions or mixing occurring in the lumen. Based on the ultrastructural characteristics, the functions of the different regions of the salivary tube have been speculated. The relationship between the salivary glands and nuptial feeding behavior of N. longiprocessa has been briefly discussed based on the structure of the salivary glands.

  相似文献   

3.
Larval morphology can provide valuable characters for taxonomic and phylogenetic analyses of insects and reflect the adaptations to various living habits. Compared with the adult stages, larval study has lagged far behind in Mecoptera. Although several genera of Panorpidae have been studied for their larval stages, the larva of Dicerapanorpa Zhong and Hua, 2013 basically remains unclear. Here the larva of Dicerapanorpa magna (Chou) is described and illustrated in detail for the first time using light microscopy and scanning electron microscopy. The larva is eruciform, with eight pairs of abdominal prolegs in addition to three pairs of thoracic legs, as in other Panorpidae. The most remarkable characteristics of the larvae include a pair of erect subdorsal annulated processes each on abdominal segments I–IX (A1–A9) and a single middorsal annulated process on A10, as well as a pair of prominent compound eyes composed of over 40 ommatidia, which distinguish this genus from other genera of Panorpidae. The annulated processes may have adaptive significance for fossorial and soil-living habits.  相似文献   

4.
External and internal structures of the larval abdomen of Nannochorista are described in detail, with emphasis on the posterior segments. The results are compared with conditions found in other groups of Antliophora, especially the mecopteran subgroups Boreidae and Pistillifera. Like the entire postcephalic body, the larval abdomen of Nannochorista is extremely slender and nearly cylindrical. The anterior segments are largely unmodified. The surface is smooth and lacks any protuberances or prolegs. The term “cloaca” for the posterior membranous pouch of Nannochorista sp. is morphologically unjustified. A list of muscles of segments IX and X is presented. The abdominal musculature was partly homologized following Snodgrass. The muscles of segment X are highly modified. They move the membranous pouch, the anal papillae, and the terminal lobes. The presence of these structures is likely an adaptation to the specific aquatic life style of nannochoristid larvae. The anal papillae are possibly homologous to the 4-lobed terminal attachment apparatus of larvae of Caurinus (Boreidae) and Pistillifera (Panorpidae, Bittacidae, Choristidae) but this is uncertain. The specific condition in both groups, i.e. two retractile papillae with tracheae and Malpighian tubules in Nannochoristidae, and a 4-lobed exposed attachment device in Pistillifera + Boreidae (groundplan) are very likely autapomorphic for both groups, respectively. A slender abdomen with smooth surface is very likely plesiomorphic within Antliophora and Mecopterida. This condition is found in Trichoptera (partim), Nannochoristidae, Siphonaptera, and many basal groups of Diptera. An eruciform or scarabaeiform body shape with a soft, largely unsclerotised cuticle is probably a synapomorphy of Boreidae and Pistillifera. The presence of ventral protuberances resembling prolegs on the anterior segments is an autapomorphy of the latter group. The homology of paired or unpaired terminal appendages of segment X is uncertain. However, the specific condition of paired and 3-segmented appendages with hooks in Nannochoristidae is almost certainly autapomorphic for this family. The protracted opening of the hind gut on the membranous pouch is another potential autapomorphy of Nannochoristidae. Aquatic habits of larvae, also very likely an apomorphic condition, have likely evolved several times independently in Antliophora.  相似文献   

5.
Phylogenetic relationships among members of the Mecoptera and Siphonaptera were inferred from DNA sequence data. Four loci (18S and 28S ribosomal DNA, cytochrome oxidase II and elongation factor-1α) were sequenced for 69 taxa selected to represent major flea and mecopteran lineages. Phylogenetic analyses of these data support a paraphyletic Mecoptera with two major lineages: Nannochoristidae + (Siphonaptera + Boreidae) and Meropidae + ((Choristidae + Apteropanorpidae) (Panorpidae + (Panorpidae + Bittacidae))). The flea family Ctenophthalmidae is paraphyletic, and the Ceratophylloidea is monophyletic. Morphological evidence is discussed which is congruent with the placement of Siphonaptera as sister group to Boreidae.  相似文献   

6.
Panorpidae is the most species-rich family in Mecoptera with ca. 470 species in the Northern Hemisphere. However, the intergeneric phylogenetic relationships of Panorpidae remain unsatisfactorily resolved to date. Here, we used molecular and cytogenetic approaches to determine the phylogenetic relationships of Panorpidae in the evolutionary scenario of chromosomes, and estimated their divergence times using fossil-calibrated Bayesian analysis. In total, 89 species representing all seven genera of Panorpidae were used to reconstruct the phylogenetic trees using maximum parsimony, maximum likelihood and Bayesian inference based on the nuclear 28S rRNA and mitochondrial cox1 and cox2 genes. The results reveal that Panorpidae is a well-supported monophyletic group that can be categorized into two major clades. Major Clade I comprises Neopanorpa and Leptopanorpa, and Major Clade II consists of all the other genera (Cerapanorpa, Dicerapanorpa, Furcatopanorpa, Panorpa and Sinopanorpa). Neopanorpa and Cerapanorpa are regarded as paraphyletic groups for the first time. BEAST analysis indicates that Panorpidae originated in the Lower Cretaceous approximately 122.5 Ma (96.8–149.3 Ma), and that most diversification occurred from the Selandian (59.8 Ma) to the Middle Pleistocene (0.6 Ma) in the Cenozoic. Cytogenetic data plotted on the cladogram show that the lineage differentiation of Panorpidae is closely related to the chromosomal evolution, especially the reduction of chromosome number. Our study suggests that a taxonomic revision of Panorpidae is urgently needed at the generic level.  相似文献   

7.
The Bittacidae are unique in Mecoptera for their adults being predaceous. However, their mouthparts have not been well documented for functional morphology to date. Here, we investigated the mouthpart morphology of the hangingflies Bittacus planus Cheng and Terrobittacus implicatus (Huang & Hua) using scanning electron microscopy. The mouthparts are of the mandibulate type and situated at the tip of an elongated rostrum. The labrum is greatly elongated, roughly twice as long as the subquadrate clypeus. The epipharynx is furnished with a row of basiconic sensilla arranged evenly as a median band extending from the apex to the base. The mandibles are slender and elongated, bearing a sharp lateral and a small mesal tooth. The maxillae are well developed, each consisting of a partially sclerotized cardo and a stipes, a hirsute galea and a lacinia, and a five-segmented maxillary palp. The sensillar pattern on the distal segment of the maxillary palp differs slightly between the two bittacid species. The labium is composed of a postmentum, a prementum, and a pair of two-segmented labial palps. The feeding mechanism of bittacids is briefly discussed in combination with the mouthpart morphology and their feeding habits.  相似文献   

8.
The midgut epithelia of the millipedes Polyxenus lagurus, Archispirostreptus gigas and Julus scandinavius were analyzed under light and transmission electron microscopies. In order to detect the proliferation of regenerative cells, labeling with BrdU and antibodies against phosphohistone H3 were employed. A tube-shaped midgut of three millipedes examined spreads along the entire length of the middle region of the body. The epithelium is composed of digestive, secretory and regenerative cells. The digestive cells are responsible for the accumulation of metals and the reserve material as well as the synthesis of substances, which are then secreted into the midgut lumen. The secretions are of three types – merocrine, apocrine and microapocrine. The oval or pear-like shaped secretory cells do not come into contact with the midgut lumen and represent the closed type of secretory cells. They possess many electron-dense granules (J. scandinavius) or electron-dense granules and electron-lucent vesicles (A. gigas, P. lagurus), which are accompanied by cisterns of the rough endoplasmic reticulum. The regenerative cells are distributed individually among the basal regions of the digestive cells. The proliferation and differentiation of regenerative cells into the digestive cells occurred in J. scandinavius and A. gigas, while these processes were not observed in P. lagurus. As a result of the mitotic division of regenerative cells, one of the newly formed cells fulfills the role of a regenerative cell, while the second one differentiates into a digestive cell. We concluded that regenerative cells play the role of unipotent midgut stem cells.  相似文献   

9.
Abstract The stemmata of last–instar Nannochoristalarvae are compound eyes composed of 10 or more ommatidia. Each ommatidium has four Semper cells, four distal and four proximal retinula cells which form a cruciform and layered rhabdom. The ommatidia are separated by epidermal cells (possibly rudimentary pigment cells). Corneal lenses are lacking. At the posterior edge, aberrant stemma units may be present which lack a dioptric apparatus and have a star–shaped rhabdom composed of at least six retinula cells. The stemmata of Nannochoristaappear to be derived from stemmata of the Panorpa-type (Mecoptera-Panorpidae). Differences between the stemmata of Nannochoristaand Panorpacan be explained as adaptations to aquatic life (flat cornea) or as regression. A compound larval eye is ascribed to the ground plan of the Mecoptera sensu latoand is considered a genuine plesiomorphy. The identical basic number (seven) of stemmata in the Neuropteroid/Coleoptera assemblage, Amphiesmenoptera and some Mecoptera (Bittacidae, Boreidae) is attributed to parallel evolution.  相似文献   

10.
The early history of Panorpidae (Mecoptera) is poorly known due to sparse fossil records. Up to date, only nine fossil species have been described, all from the Paleogene, except the Early Cretaceous Solusipanorpa gibbidorsa Lin, 1980. However, we suggest S. gibbidorsa is too incompletely preserved to permit even family classification. A new genus with two new species, Jurassipanorpa impunctata gen. et sp. n. and Jurassipanorpa sticta sp. n., are described based on four well-preserved specimens from the late Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China. These two new species are the earliest fossil records of Panorpidae. The new genus is erected based on a combination of forewing characters: both R1 and Rs1 with two branches, 1A reaching posterior margin of wing distad of the forking of Rs from R1, and no crossveins or only one crossvein between veins of 1A and 2A. In all four specimens, long and robust setae ranging from 0.09 to 0.38 mm in length and pointing anteriorly, are present on anal veins of forewings. The function of these setae is enigmatic.  相似文献   

11.
Liu, S. and Hua, B. 2009. Histology and ultrastructure of the salivary glands and salivary pumps in the scorpionfly Panorpa obtusa (Mecoptera: Panorpidae). —Acta Zoologica (Stockholm) 91 : 457–465. The morphology, histology and ultrastructure of the salivary glands and salivary pumps in the scorpionfly Panorpa obtusa Cheng 1949 were investigated using light microscopy and scanning and transmission electron microscopy. The salivary glands display a distinct sexual dimorphism. The female has only two small sac‐like glands located in the prothorax, while the male possesses six long tubular glands extending into the sixth abdominal segment. The male salivary glands can be divided into five distinct regions. The apical long, thin secretory region possesses numerous secretory cells containing large secretory vesicles; the salivary reservoir expands in diameter, accumulating and temporarily storing the saliva in addition to secreting saliva; the constricted region contains prismatic cells with complex infolded plasma membrane; the sac has an internal brush border to absorb water and ions; the common salivary duct contains longitudinal muscles in the male, but not in the female. The salivary pump possesses independent strong dorsal muscles and abundant internal palm spines near its orifice. The anatomy and ultrastructure of the salivary glands and the salivary pump of scorpionflies as well as their possible functions are briefly discussed.  相似文献   

12.
Two entirely different types of ovaries (ovarioles) have been described in mecopterans. In the representatives of Meropeidae, Bittacidae, Panorpodidae and Panorpidae the ovarioles are of the polytrophic-meroistic type. Four regions: a terminal filament, germarium, vitellarium and ovariole stalk can be distinguished in the ovarioles. The germaria house numerous germ cell clusters. Each cluster arises as a result of 2 consecutive mitoses of a cystoblast and consists of 4 sibling cells. The oocyte always differentiates from one of the central cells of the cluster, whereas the remaining 3 cells develop into large, polyploid nurse cells. The vitellaria contain 7-12 growing egg chambers (= oocyte-nurse cell complexes). In contrast, the ovaries of the snow flea, Boreus hyemalis, are devoid of nurse cells and therefore panoistic (secondary panoistic). The ovarioles are composed of terminal filaments, vitellaria and ovariole stalks only; in adult females functional germaria are absent. Histochemical tests suggest that amplification of rDNA takes place in the oocyte nuclei. Resulting dense nucleolar masses undergo fragmentation into multiple polymorphic nucleoli. The classification of extant mecopterans as well as the phylogenetic relationships between Mecoptera and Siphonaptera are discussed in the context of presented data.  相似文献   

13.
Bioinsecticides are important in the control of disease vectors, but data regarding their physiological effects on target insects are incomplete. This study describes morphological changes that occur in the midgut of third instar Aedes aegypti L. (Diptera: Culicidae) following treatment with a methanolic extract of Annona coriacea (Magnoliales: Annonaceae). Dissected midguts were subdivided into anterior and posterior regions and analyzed by light and scanning electron microscopy. Insects exposed to the extract displayed intense, destructive cytoplasmic vacuolization in columnar and regenerative midgut cells. The apical surfaces of columnar cells exhibited cytoplasmic protrusions oriented toward the lumen, suggesting that these cells could be involved in apocrine secretory processes and/or apoptosis. We report that A. coriacea extracts induced morphological alterations in the midgut of A. aegypti midgut larvae, supporting the use of plant extracts for control of the dengue vector.  相似文献   

14.
Bumblebees are widely distributed across the world and have great economic and ecological importance as pollinators in the forest as well as in agriculture. The insect midgut consists of three cell types, which play various important roles in digestion, absorption, and hormone production. The present study characterized the anterior and posterior midgut regions of the bumblebee, Bombus morio. The digestive, regenerative and endocrine cells in the midgut showed regional differences in their number, nuclear size, as well as the size of the striated border. Ultrastructurally, the digestive cells contained many mitochondria and long microvilli; however, in the anterior midgut region, these cells showed dilated basal labyrinths with a few openings for the hemocoel, whereas the labyrinths of the basal posterior region remained inverse characteristics. Thus, the characterization of the midgut of B. morio supported an ecto-endoperitrophic circulation, contributing to a better understanding of the digestive process in this bee.  相似文献   

15.
A new genus of Panorpidae, Megapanorpa gen. nov. , is erected for five new species, Megapanorpa grandis sp. nov. (type species), M. absens sp. nov. , M. gaokaii sp. nov. , M. jiangorum sp. nov. and M. wanghongjiani sp. nov. This genus is similar to Cerapanorpa Gao et al., 2016 in a single anal horn on the sixth tergum of male, but can be differentiated from the latter by the following characters: the seventh abdominal segment of male is constricted and stalk‐like at base, the subgenital plate of female with a pair of lateral plates, and the medigynium of female with a concealed axis. Keys to genera of Panorpidae and species of Megapanorpa gen. nov. are presented. The morphology and function of anal horns in different genera and species have been discussed.  相似文献   

16.
The phylogenetic system of the Mecoptera   总被引:9,自引:0,他引:9  
Abstract. Many families like the Mesochoristidae, Agetopanorpidae and Permopanorpidae, which were believed by earlier writers to be Mecoptera, are members of the stem group of the Antliophora (Diptera Mecoptera+Siphonaptera) or of stem groups of monophyletic groups of even higher rank (e.g. Mecopteroidea). Others - like the so-called 'Pro-tomecoptera' from the Permian of the Kusnetsk Basin - are not even closely related to the Mecopteroidea. Only the families mentioned in the following phylogenetic system of the Mecoptera are definitely members of the order:
1 Nannomecoptera (Nannochoristidae)
2 Pistillifera
2.1 Raptipedia (Neorthophlebiidae, Bittacidae, Cimbrophlebiidae)
2.2 Opisthogonopora
2.2.1 Boreomorpha (Boreidae)
2.2.2 Meropomorpha (Meropeidae)
2.2.3 Panorpomorpha
2.2.3.1 Eomeropina (Eomeropidae=Notiothaumidae)
2.2.3.2 Panorpina
2.2.3.2.1 Apteropanorpini (Apteropanorpidae)
2.2.3.2.2 Panorpini
2.2.3.2.2.1 Choristoidea (Choristidae)
2.2.3.2.2.2 Panorpoidea (Orthophlebiidae, Dinopanorpidae, Austropan-orpidae, Muchoriidae, Panorpodidae, Panorpidae)
The Orthophlebiidae and Neorthophlebiidae are not monophyletic. There are, however, no characters preserved which would allow a clarification of the exact relations between members of these two groups and the families derived from them. The fossil Xenochoristidae, Triasso-choristidae, Mesopanorpodidae and Robinjohniidae may be further members of the Mecoptera. Their exact phylogenetic relations, however, are unknown.  相似文献   

17.

Background

The overabundance of synonyms is an unavoidable by-product of taxonomic practice in insects. How to reduce or even eliminate synonymy has long been a great challenge for insect taxonomists. The scorpionflies Panorpa obtusa Cheng, 1949 and Panorpa leei Cheng, 1949 (Insecta: Mecoptera: Panorpidae) were originally described from Taibaishan in the Qinling Mountains with identical collection data and both are based on a single gender, the former on a male and the latter on two females. However, whether P. leei is conspecific with P. obtusa or a good species remains an unsolved problem.

Results

On the basis of intensive morphological comparison of 93 males and 53 females of scorpionflies collected from the type locality using light and scanning electron microscopy, we found P. obtusa has considerable morphological variation (especially the wing markings and genitalia in both male and female), and Panorpa leei is totally comprised of one of the morphs of P. obtusa.

Conclusions

In combination with identical type localities and overlapping morphological variation, P. leei Cheng is proposed as a junior subjective synonym of P. obtusa Cheng. To avoid synonyms, taxonomists should pay more attention to individual variation and base decisions on a series of specimens to describe new species.  相似文献   

18.
姜碌  花保祯 《昆虫学报》2016,(9):1004-1012
【目的】蝎蛉科(Panorpidae)是长翅目(Mecoptera)最大的科,是重要的生态指示昆虫。然而,由于对环境条件要求苛刻,饲养困难,其幼期研究很不充分。【方法】本研究通过人工饲养成虫获得了长蝎蛉Panorpa macrostyla Hua的卵、幼虫和蛹等全部虫态,运用光学显微镜和扫描电子显微技术观察了其超微形态,并简要记载了其生物学特性。【结果】长蝎蛉每年发生1代,成虫发生于6月末至8月初。卵椭球形,卵壳表面覆盖一层隆起的网状结构。幼虫蠋型,具3对分4节的胸足和8对不分节的腹足;头壳高度骨化,具1对由26个小眼组成的复眼和1对3节的触角,口器咀嚼式;腹部第1-9节背面具有成对的背毛突,第10节仅有1根背毛突,腹部末端具有一个可伸缩的吸盘;呼吸系统为周气门式,具1对前胸气门和8对腹气门。幼虫共4个龄期,以预蛹期在土室内越冬。蛹为强颚离蛹,外形接近成虫,雄蛹腹部末端膨大。【结论】基于幼虫形态特征,长蝎蛉明显区别于新蝎蛉属Neopanorpa、华蝎蛉属Sinopanorpa、双角蝎蛉属Dicerapanorpa以及单角蝎蛉属Cerapanorpa幼虫。然而,长蝎蛉幼虫头部刚毛L2和SO2,腹部末节刚毛D2,SD1和SD2端部均膨大呈棒状,与蝎蛉属Panorpa其他种类区别明显,表明长蝎蛉的属级地位需要进一步研究。  相似文献   

19.
External and internal features of the head of adults of Merope tuber were examined and described in detail. The results were compared to conditions found in other members of Mecoptera and other antliophoran lineages. A list of characters of different body parts and life stages is presented. The parsimony analysis and a recent evaluation of thoracic features suggest a basal placement of Merope within monophyletic Pistillifera. The monophyly of Mecoptera was not supported by our data set. Nannochoristidae (Nannomecoptera) was placed as sistertaxon of a clade comprising Diptera and Siphonaptera. Cephalic features supporting this group are modifications of the mouthparts linked to feeding on liquid substrates. Considering recent results of extensive morphological and molecular investigations we consider this placement of Nannochoristidae and the implied mecopteran paraphyly as a possible artefact. Potential cephalic autapomorphies of Mecoptera are the presence of a tooth-like projection of the gena and a prepharyngeal tube, the absence of M. frontolabralis, and the origin of M. tentoriooralis on the middle region of the anterior tentorial arm. Despite of the conspicuous morphological differences between Caurinus and the other boreid genera the family forms a well supported clade. A sistergroup relationship between Boreidae and Pistillifera is confirmed. A unique synapomorphy is the presence of specialized dilator muscles of the salivary duct. The reconstruction of the relationships of the pistilliferan taxa is strongly impeded by a serious lack of morphological data. However, a group comprising Eomeropidae, Choristidae, Apteropanorpidae, Panorpidae and Panorpodidae is supported in our analyses. Further well documented anatomical data are needed for a reliable reconstruction of mecopteran relationships. The collecting and morphological study of larvae should also have high priority. Inherent problems are extreme secondary modifications of cephalic features of Caurinus and Nannochorista.  相似文献   

20.
生活在同一地域的物种,会因强烈的资源竞争而产生生态位重叠与分离,从而实现相互共存。以神农架地区啮齿动物为研究对象,比较分析不同啮齿类食性、脏器重量及消化道形态差异,探索其共存机制及其生理生态学上的适应策略。食性上,安氏白腹鼠(Niviventer andersoni)、社鼠(N.confucianus)、高山姬鼠(Apodemus chevrieri)、中华姬鼠(A.draco)均为杂食者,但各自喜食偏好不同,安氏白腹鼠的食物组成以植物枝叶和种子为主,社鼠、高山姬鼠和中华姬鼠的食物组成均以种子和动物性食物为主。与各自生态习性及其食性相适应,不同啮齿动物的脏器重量及消化道形态发生相应的变化。脏器重量上,不同啮齿动物心鲜重、肺鲜重、脾鲜重和干重无显著差异,其它指标差异显著。安氏白腹鼠的心干重、肺干重、肝鲜重和干重、肾鲜重和干重显著大于社鼠、高山姬鼠和中华姬鼠。消化道形态上,不同啮齿动物盲肠长、净鲜重和干重无显著差异,其它指标差异显著。其中,胃含内容物鲜重、净鲜重和干重,盲肠含内容物鲜重,大肠长、含内容物鲜重、净鲜重和干重均以安氏白腹鼠具较大值,但各自变化趋势不同;小肠长、含内容物鲜重、净鲜重和干重则以社鼠具较大值。且同属姬鼠属的高山姬鼠和中华姬鼠脏器重量及消化道形态各指标间均无显著差异。由于小泡巨鼠和猪尾鼠数量较少,未进行统计分析。以上结果显示:食物资源利用上的分化有利于安氏白腹鼠与其近缘物种社鼠及其他鼠类的同域共存,且为适应不同的食物资源利用模式,其脏器及消化道形态也发生了适应性的变化;同域分布的近缘物种高山姬鼠、中华姬鼠则有可能采取其它策略而非食物资源分化模式实现共存。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号