首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
The carbon, oxygen, and strontium isotope composition of enamel from teeth of large Miocene herbivorous mammals from Sandelzhausen (MN5, late Early/early Middle Miocene) in the North Alpine foreland basin, were analyzed to infer diet and habitat. The mean enamel δ13C value of −11.4 ± 1.0‰ (n = 53) for the nine taxa analyzed (including proboscideans, cervids, suids, chalicotheres, equids, rhinocerotids) indicates a pure C3 plant diet for all mammals. 87Sr/86Sr ratios of ~0.710 higher than those from teeth of the western Molasse Basin (0.708–0.709) seem to indicate preferential feeding of the mammals in the northeastern Molasse Basin. The sympatric herbivores have different mean δ13C and δ18O values which support diet partitioning and/or use of different habitats within a C3 plant ecosystem. Especially the three sympatric rhinoceroses Plesiaceratherium fahlbuschi, Lartetotherium sansaniense, and Prosantorhinus germanicus show clear partitioning of plants and/or habitats. The palaeomerycid Germanomeryx fahlbuschi was a canopy folivore in moderately closed environments whereas Metaschizotherium bavaricum (Chalicotheriidae) and P. germanicus (Rhinocerotidae) were browsers in more closed forest environments. The horse Anchitherium aurelianense was probably a more generalized feeder than assumed from its dental morphology. The forest hog Hyotherium soemmeringi has the highest δ13C and lowest δ18O value of all analyzed taxa, possibly related to a frugivorous diet. Most taxa were water-dependent browsers that record meteoric water δ18O values of about −5.6 ± 0.7‰ Vienna Standard Mean Ocean Water (VSMOW). Using a modern-day mean annual air temperature (MAT)– relation a MAT of 19.3 ± 1.5°C can be reconstructed for Sandelzhausen. A Gomphotherium subtapiroideum tusk serially sampled for δ18O values does not record a clear pattern of seasonality. Thus most taxa were C3 browsers in a forested and humid floodplain environment in the Molasse Basin, which experienced a warm-temperate to subtropical climate and possibly low seasonality.   相似文献   

2.
Carbon isotope fractionation in plants   总被引:7,自引:0,他引:7  
Plants with the C3, C4, and crassulacean acid metabolism (CAM) photosynthetic pathways show characteristically different discriminations against 13C during photosynthesis. For each photosynthetic type, no more than slight variations are observed within or among species. CAM plants show large variations in isotope fractionation with temperature, but other plants do not. Different plant organs, subcellular fractions and metabolises can show widely varying isotopic compositions. The isotopic composition of respired carbon is often different from that of plant carbon, but it is not currently possible to describe this effect in detail. The principal components which will affect the overall isotope discrimination during photosynthesis are diffusion of CO2, interconversion of CO2 and HCO?3, incorporation of CO2 by phosphoenolpyruvate carboxylase or ribulose bisphosphate carboxylase, and respiration. Theisotope fractionations associated with these processes are summarized. Mathematical models are presented which permit prediction of the overall isotope discrimination in terms of these components. These models also permit a correlation of isotope fractionations with internal CO2 concentrations. Analysis of existing data in terms of these models reveals that CO2 incorporation in C3 plants is limited principally by ribulose bisphosphate carboxylase, but CO2 diffusion also contributes. In C4 plants, carbon fixation is principally limited by the rate of CO2 diffusion into the leaf. There is probably a small fractionation in C4 plants due to ribulose bisphosphate carboxylase.  相似文献   

3.
The isotopic composition ofmethyl bromide (CH3Br) has been suggestedto be a potentially useful tracer forconstraining the global CH3Br budget. Inorder to determine the carbon isotopiccomposition of CH3Br emitted from the mostsignificant anthropogenic application(pre-plant fumigation) we directly measured the13C of CH3Br released duringcommercial fumigation. We also measured theisotopic fractionation associated withdegradation in agricultural soil under typicalfield fumigation conditions. The isotopiccomposition of CH3Br collected in soilseveral hours after injection of the fumigantwas –44.5 and this value increased to –20.7over the following three days. The mean kineticisotope effect (KIE) associated withdegradation of CH3Br in agricultural soil(12) was smaller than the reported value formethylotrophic bacterial strain IMB-1, isolatedfrom previously fumigated agricultural soil,but was similar to methylotrophic bacterialstrain CC495, isolated from a pristine forestlitter zone. Using this fractionationassociated with the degradation of CH3Brin agricultural soil and the mean13C of the industriallymanufactured CH3Br (–54.4), we calculatethat the agricultural soil fumigation sourcehas a carbon isotope signature that ranges from–52.8 to –42.0. Roughly 65% ofindustrially manufactured CH3Br is usedfor field fumigations. The remaining 35% isused for structural and post-harvestfumigations with a minor amount used duringindustrial chemical manufacturing. Assumingthat the structural and post-harvest fumigationsources of CH3Br are emitted withoutsubstantial fractionation, we calculate thatthe 13C of anthropogenicallyemitted CH3Br ranges from –53.2 to –47.5.  相似文献   

4.
Hubert Ziegler  Hannes Hertel 《Flora》2007,202(8):647-652
Carbon isotope ratios of herbarium material from members of the fresh-water families Podostemaceae and Hydrostachyaceae (Rosidae) were analyzed. The levels of 13C were highly variable (Podostemaceae −12.8‰ to −38.55‰; Hydrostachyaceae −10.78‰ to −30.42‰), across as well as within species and across a wide geographic range.

We suggest that the high variance observed is due neither to a constant attribute of the species like the photosynthetic CO2-carboxylase (in water plants with very high discrimination of the 13CO2 probably Rubisco) nor to the constant structural peculiarities of these species. Rather, it is likely due to the ‘diffusional resistance’ for the CO2-flux from the turbulent and/or fast flowing water, causing a very variable boundary layer on the plant surface.  相似文献   


5.
Carbon and oxygen isotopic analyses from upper Palaeogene molluscs collected in the Hampshire Basin (S. England) show that, in addition to long‐term trends in the data caused by climatic change, there is variation within samples collected from any one horizon. This variation is not attributable to diagenesis or other “noise”;. Linear trends in data from the meso‐ and oligohaline organisms are salinity‐dependent, as is a differentiation into clusters of the marine and brackish water animals. Within the marine organisms there is further distinction between taxa, controlled by micro‐environment. This is quite distinct from disequilibrium precipitation, as shell growth occurs in equilibrium with local isotopic ratios, though this may not necessarily be the same as contemporary mean ocean values. This “ecological fractionation”; can seriously affect the isotopic signal from a suite of fossils. Its existence should therefore be borne in mind when interpreting any biogenic isotope data from diverse taxa, localities, or micro‐habitats.  相似文献   

6.
R. Sukumar  R. Ramesh 《Oecologia》1992,91(4):536-539
Summary Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the δ13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in δ13C values of collagen in sub-adult (range -10.5‰ to-22.7‰, variance=14.51) compared to adult animals (range -16.0‰ to -20.3‰, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.  相似文献   

7.
L. Sun  L. H. Wu  T. P. Ding  S. H. Tian 《Plant and Soil》2008,304(1-2):291-300
Silicon (Si) isotope composition and Si distribution among different rice plant organs and different parts of rice leaf at maturity were studied, which may provide new insights into the mechanism of Si accumulation in plants and biogeochemical Si cycle. An isotope ratio mass spectrometer (IRMS) was used to examine Si isotope fractionation by rice plant grown in a hydroponic system. The observed 30Si-depletion (about 0.3‰) of whole plant relative to external nutrient solutions suggested biologically mediated Si isotope fractionation occurred during uptake. However, it was not possible to judge the Si uptake mechanism with the data. For δ30Si variation within plant, there was a consistent increasing trend from lower to upper tissues (stem < leaf < husk < grain; leaf sheath < leaf blade base <leaf blade middle < leaf blade top). The phenomenon, reflecting kinetic isotope effects, could be explained that isotope fractionation during Si deposition in rice plant was a Rayleigh-like behavior. The range (−2.7‰ to 2.3‰) of δ30Si variation among rice plant tissues in present experiment exceeded that (−1.7‰ to 2.5‰) of phytoliths observed previously in continents, which would enhance understanding the role of phytoliths on globe Si isotope balance.  相似文献   

8.
9.
In an effort to understand the relationships between both the lipid content and 13C values of Collembola and their diet, isotopically labelled (C3 and C4) bakers yeasts were cultured and fed to two Collembolan species, Folsomia candida and Proisotoma minuta. The fatty acid composition of Collembola generally reflected that of the diet with the addition of the polyunsaturated components 18:2(n-6), 20:4(n-6) and 20:5(n-3), which appeared to be biosynthesised by the Collembola. Whilst ergosterol was the only sterol detected in the yeast diets, only cholesterol was detected in Collembola, and although the 13C values of diet and consumer sterols differed by >2, the 13C values indicated that cholesterol was derived entirely from dietary sterol. The bulk 13C values of Collembola were similar to those of the diets, but fatty acid 13C values did not necessarily reflect those of the dietary fatty acids, indicating significant de novo biosynthesis of fatty acids within Collembola. Switching the Collembola from C3 to C4 yeast enabled the determination of the rates of incorporation of dietary carbon into Collembolan lipids, and showed that half-lives of the incorporation of dietary carbon varied between 1.5 and 5.8 days at 20°C. Cholesterol exhibited the slowest rate of incorporation in both species, while bulk carbon in F. candida possessed an intermediate rate. These results demonstrate that an understanding of the sources of isotopic fractionation and the role of biochemistry in regulating the 13C values of individual compounds is important in the application of compound-specific isotopic analysis to the study of animal trophic activities.  相似文献   

10.
In an earlier study, we found that rice (Oryza sativa) grown in nutrient solution well‐supplied with Zn preferentially took up light 64Zn over 66Zn, probably as a result of kinetic fractionation in membrane transport processes. Here, we measure isotope fractionation by rice in a submerged Zn‐deficient soil with and without Zn fertilizer. We grew the same genotype as in the nutrient solution study plus low‐Zn tolerant and intolerant lines from a recombinant inbred population. In contrast to the nutrient solution, in soil with Zn fertilizer we found little or heavy isotopic enrichment in the plants relative to plant‐available Zn in the soil, and in soil without Zn fertilizer we found consistently heavy enrichment, particularly in the low‐Zn tolerant line. These observations are only explicable by complexation of Zn by a complexing agent released from the roots and uptake of the complexed Zn by specific root transporters. We show with a mathematical model that, for realistic rates of secretion of the phytosiderophore deoxymugineic acid (DMA) by rice, and realistic parameters for the Zn‐solubilizing effect of DMA in soil, solubilization and uptake by this mechanism is necessary and sufficient to account for the measured Zn uptake and the differences between genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号