首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Ko AR  Huh YH  Lee HC  Song WK  Lee YS  Chun JS 《IUBMB life》2006,58(10):597-605
We have previously shown that activation of extracellular signal-regulated protein kinase-1 and -2 (ERK1/2) causes chondrocyte dedifferentiation, which contributes to the destruction of arthritic cartilage. In the present study, we identified genes involved in the ERK1/2 regulation of chondrocyte dedifferentiation. Several genes were identified by subtractive hybridization, and, of these, arginase II was selected for further functional characterization. Similar to the pattern of type II collagen expression, which is a hallmark of chondrocyte differentiation, arginase II expression was increased during chondrogenesis of mesenchymal cells. The high expression level of arginase II was decreased during dedifferentiation of chondrocytes, whereas its expression was restored during redifferentiation of the dedifferentiated chondrocytes. Inhibition of ERK1/2 signaling in chondrocytes enhanced type II collagen expression with a concomitant increase in expression and activity of arginase II. However, ectopic expression of arginase II or inhibition of its activity did not affect chondrocyte differentiation. The results collectively indicate that expression of arginase II is specific to the chondrocyte phenotype, although the expression of arginase II alone is not sufficient for articular chondrocytes to maintain a differentiated phenotype.  相似文献   

5.
6.
7.
8.
Cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes. Differentiated chondrocytes in articular cartilage undergo dedifferentiation and apoptosis during arthritis, in which NO production plays a critical role. Here, we investigated the roles and mechanisms of action of insulin-like growth factor-1 (IGF-1) in the chondrogenesis of mesenchymal cells and the maintenance and survival of differentiated articular chondrocytes. IGF-1 induced chondrogenesis of limb bud mesenchymal cells during micromass culture through the activation of phosphatidylinositol 3-kinase (PI3K) and Akt. PI3K activation is required for the activation of protein kinase C (PKC)-alpha and p38 kinase and inhibition of ERK1/2. These events are necessary for chondrogenesis. The growth factor additionally blocked NO-induced dedifferentiation and apoptosis of primary culture articular chondrocytes. NO production in chondrocytes induced down-regulation of PI3K and Akt activities, which was blocked by IGF-1 treatment. Stimulation of PI3K by IGF-1 resulted in blockage of NO-induced activation of p38 kinase and ERK1/2 and inhibition of PKCalpha and PKCzeta, which in turn suppressed dedifferentiation and apoptosis. Our results collectively indicate that IGF-1 regulates differentiation, maintenance of the differentiated phenotype, and apoptosis of articular chondrocytes via a PI3K pathway that modulates ERK, p38 kinase, and PKC signaling.  相似文献   

9.
10.
Cartilage formation during both embryonic development and bone repairing processes involves mesenchymal stem cells (MSCs) differentiation. Wnt/β-catenin signaling pathway inhibits early chondrogenesis and is down-regulated during Transforming growth factor-β1 (TGF-β1)-induced chondrogenesis. However, the regulatory molecules that participate in the process is unknown. This study was designed to investigate the underlying mechanisms that down-regulate Wnt/β-catenin pathway during chondrogenesis. TGF-β1-induced micromass cultures of C3H10T1/2 were used as chondrocyte differentiation model. Gene expression profile was detected by realtime-PCR. Regulatory role of HDAC1 on β-catenin was investigated by luciferase assay, chromatin immunoprecipitation (ChIP) assay, co-immunoprecipitation (Co-IP) assay and in vitro ubiquitination assay. In this study, we showed that HDAC1 was induced and suppressed β-catenin gene expression through direct binding to its promoter. Besides, HDAC1 could also interact with deacetylate β-catenin protein through its deacetylase domain, which causes degradation of β-catenin. Our results indicate that HDAC1 plays an important role in chondrogenesis and may represent a therapeutic target for modulation of cartilage development.  相似文献   

11.
12.
13.
Although much is known about interleukin (IL)-1β and its role as a key mediator of cartilage destruction in osteoarthritis, only limited information is available on IL-1β signaling in chondrocyte dedifferentiation. Here, we have characterized the molecular mechanisms leading to the dedifferentiation of primary cultured articular chondrocytes by IL-1β treatment. IL-1β or lipopolysaccharide, but not phorbol 12-myristate 13-acetate, retinoic acid, or epidermal growth factor, induced nicotinamide phosphoribosyltransferase (NAMPT) expression, showing the association of inflammatory cytokines with NAMPT regulation. SIRT1, in turn, was activated NAMPT-dependently, without any alteration in the expression level. Activation or inhibition of SIRT1 oppositevely regulates IL-1β-mediated chondrocyte dedifferentiation, suggesting this protein as a key regulator of chondrocytes phenotype. SIRT1 activation promotes induction of ERK and p38 kinase activities, but not JNK, in response to IL-1β. Subsequently, ERK and p38 kinase activated by SIRT1 also induce SIRT1 activation, forming a positive feedback loop to sustain downstream signaling of these kinases. Moreover, we found that the SIRT1-ERK complex, but not SIRT1-p38, is engaged in IL-1β-induced chondrocyte dedifferentiation via a Sox-9-mediated mechanism. JNK is activated by IL-1β and modulates dedifferentiation of chondrocytes, but this pathway is independent on NAMPT-SIRT1 signaling. Based on these findings, we propose that IL-1β induces dedifferentiation of articular chondrocytes by up-regulation of SIRT1 activity enhanced by both NAMPT and ERK signaling.  相似文献   

14.
Matrilysin (MMP7) is a secreted matrix metalloproteinase, which contributes to angiogenesis by breaking down basement membranes. We show that the angiogenic factor FGF-2 induces MMP7 expression in human endothelial cells. The promoter contains a Lef/Tcf consensus sequence, but using wildtype or Lef/Tcf-mutated promoter constructs, FGF-2-induced MMP7 reporter activity is independent from Lef/Tcf sites. Instead, we show that overexpression of a dominant negative Stat3 mutant reduces FGF-2-mediated MMP7 promoter activity. However, Stat3 does not bind to the MMP7 promoter, but activates MMP7 gene expression indirectly via AP-1. This is confirmed by MMP7 promoter constructs with mutated AP-1 sites which did not respond to FGF-2 and by siRNAs against Stat1 and Stat3, which repressed FGF-2-induced MMP7 protein expression. In conclusion, we show that FGF-2-induced MMP7 expression in endothelium depends on AP-1 and FGF-2 signaling to AP-1 involves a Stat1/3-dependent pathway.  相似文献   

15.
16.
17.
Wnt-5a是Wnt信号转导途径中一个重要的成员,可影响Tcf/Lef转录因子,调控特定基因的表达.令人费解的是,它在不同肿瘤中具有截然不同的促进或抑制肿瘤作用.目前关于Wnt-5a在卵巢癌中的表达与功能尚不十分清楚.免疫组织化学检测显示,Wnt-5a在卵巢癌组织中的表达低于正常卵巢组织.蛋白质免疫印迹法检测揭示,Wnt-5a在卵巢癌细胞株A2780中表达低于正常卵巢细胞株TC-1,不同浓度Wnt-5a作用下 A2780细胞内β-catenin表达降低.实时荧光定量PCR检测mRNA揭示,不同浓度Wnt-5a作用下A2780细胞内β-catenin和MMP-26表达降低.细胞划痕、Tanswell法显示,Wnt-5a可抑制A2780细胞迁移.本研究结果提示,Wnt-5a在卵巢癌中扮演抑制肿瘤的角色,与抑制β-catenin和MMP-26表达、肿瘤的细胞运动能力有关.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号