首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal temperament is a trait of economic relevance and its use as a selection criterion requires the identification of environmental factors that influence this trait, as well as the estimation of its genetic variability and interrelationship with other traits. The objectives of this study were to evaluate the effect of the covariates dam age at calving (ADC), long yearling age (YA) and long yearling weight (YW) on temperament score (T) and to estimate genetic parameters for T, scrotal circumference (SC) at long YA and age at first calving (AFC) in Nellore cattle participating in a selection program. The traits were analyzed by the restricted maximum likelihood method under a multiple-trait animal model. For all traits, contemporary group was included as a fixed effect and additive genetic and residual as random effects. In addition to these effects, YA, YW and ADC were considered for analyzing T. In the case of SC and AFC, the effect of long YW was included as a covariate. Genetic parameters were estimated for and between traits. The three covariates significantly influenced T. The heritability estimates for T, SC and AFC were 0.18 ± 0.02, 0.53 ± 0.04 and 0.23 ± 0.08, respectively. The genetic correlations between T and SC, and T and AFC were -0.07 ± 0.17 and -0.06 ± 0.19, respectively. The genetic correlation estimated between SC and AFC was -0.57 ± 0.16. In conclusion, a response to selection for T, SC and AFC is expected and selection for T does not imply correlated responses with the other traits.  相似文献   

2.
Genetic, environmental and phenotypic correlations between libido, testicular measurements, body weight and semen traits were estimated by multiple-trait-restricted maximum likelihood (MTDFREML) under animal models. Reproductive records, collected from 1992 to 1997, of 288 Nellore bulls were used. Estimates of heritability for libido unadjusted, adjusted for scrotal circumference and adjusted for body weight, were 0.34 +/- 0.10, 0.31 +/- 0.10, and 0.19 +/- 0.11, respectively. Genetic correlations between libido and body weight, scrotal circumference, testis length, testis width, testis volume and testis consistency were, respectively, 0.69, -0.43, -0.31, -0.16, 0.10, 0.87, and between libido and semen volume, sperm motility, vigor, gross motility, major, minor and total defects were, respectively, 0.71, 0.51, 0.12, 0.16, 0.31, 0.26 and 0.43. Results suggested that selection for libido would be effective and that it would lead to desirable correlated response for scrotal circumference, physical and morphological semen traits and undesirable correlated response in body weight.  相似文献   

3.
Data of pregnancy diagnosis from 24,945 Nellore heifers, raised under tropical conditions in Brazil and exposed to breeding at about 14 months of age, were analyzed simultaneously with 13,742 (analysis 1), 36,091 (analysis 2), 8,405 (analysis 3), and 8,405 (analysis 4) scrotal circumference (SC) records of contemporary young bulls in order to estimate heritability (h(2)) for yearling heifer pregnancy (HP) and for SC measured at around 15 (SC15) and 18 (SC18) months of age and to estimate genetic correlation between HP and SC15 (SC18). Heifer pregnancy was considered as a categorical trait, with the value 1 (success) assigned to heifers that were detected as pregnant by rectal palpation approximately 60 days after the end of a 90-day breeding season and the value 0 (failure) otherwise. In analyses 1 and 3, SC was measured at around 15 months of age and in analysis 2 and 4 it was measured at around 18 months of age. Only 8,848 animals from datasets 1 and 2 were common in both files, which means the same animals measured at different ages. Datasets used in analyses 3 and 4 included the same animals, measured at 15 and at 18 months of age, respectively. Heritability estimates for HP were similar in all analyses, with values ranging from 0.66 +/- 0.08 to 0.67 +/- 0.008. For SC15, the estimates were 0.57 +/- 0.05 in analysis 1 and 0.60 +/- 0.07 in analysis 3. For SC18, the estimates were 0.53 +/- 0.03 in analysis 2 and 0.64 +/- 0.06 in analysis 4. The estimates of genetic correlation between HP and SC15 were 0.15 +/- 0.10 in analysis 1 and 0.11 +/- 0.11 in analysis 3. For the correlation between HP and SC18, the values were 0.27 +/- 0.10 in analysis 2 and 0.16 +/- 0.11 in analysis 4. Based on standard errors and confidence intervals, the best heritability and genetic correlation estimates were obtained from analysis 2, which included more data and a better pedigree structure. Pearson correlation between HP and SC breeding values was similar to the genetic correlation estimates obtained from two-trait models, when all animals in the pedigree file were considered for its calculation. If only sires were considered for the calculation, Pearson correlation was higher but the pattern was the same as from two-trait analyses. The high heritability estimates obtained in the present study confirm that expected progeny difference (EPD) for HP can be used to select bulls for the production of precocious daughters and that the low genetic correlation between SC and HP indicates a greater efficacy of selection based on heifer pregnancy EPD than of selection based on scrotal circumference EPD. The results of the present study, although not conclusive, indicate that SC measured at around SC18 would have a higher genetic correlation with HP than would SC measured at around SC15.  相似文献   

4.
Heritability estimates and genetic correlations were obtained for body weight and scrotal circumference, adjusted, respectively, to 12 (BW12 and SC12) and 18 (BW18 and SC18) months of age, for 10 742 male Nellore cattle. The adjustments to SC12 and SC18 were made using a nonlinear logistic function, while BW12 and BW18 were obtained by linear adjustment. The contemporary groups (CGs) were defined from animals born on the same farm, in the same year and birth season. The mean heritability estimates obtained using the restricted maximum likelihood method in bi-trait analysis were 0.25, 0.25, 0.29 and 0.42 for BW12, BW18, SC12 and SC18, respectively. The genetic correlations were 0.30 ± 0.11, 0.21 ± 0.13, 0.21 ± 0.11, -0.08 ± 0.15, 0.16 ± 0.12 and 0.89 ± 0.04 between the traits BW12 and BW18; BW12 and SC12; BW12 and SC18; BW18 and SC12; BW18 and SC18; and SC12 and SC18. The heritability for SC18 was considerably greater than for SC12, suggesting that this should be included as a selection criterion. The genetic correlation between BW18 and SC12 was close to zero, indicating that these traits did not influence each other. The contrary occurred between SC12 and SC18, indicating that selection using one of these could alter the other. Because of the mean magnitudes of heritabilities in the various measurements of weight and scrotal perimeter, it is suggested that the practice of individual selection for these traits is possible.  相似文献   

5.
Records from 106,212 Nellore animals, born between 1998 and 2006, were used to estimate (co)variance components and genetic parameters for birth weight (BW), average weight gains from birth to weaning (GBW), average weight gains from weaning to after yearling (GWAY), weaning hip height (WHH), postweaning hip height (PHH) and scrotal circumferences at 9 (SC9), 12 (SC12) and 15 (SC15) months of age. (Co)variance components were estimated by an animal model using multi-trait analysis. Heritability estimates for BW, GBW, GWAY, WHH, PHH, SC9, SC12 and SC15 were 0.31 ± 0.01; 0.25 ± 0.02; 0.30 ± 0.04; 0.51 ± 0.04; 0.54 ± 0.04; 0.39 ± 0.01; 0.41 ± 0.01 and 0.44 ± 0.02, respectively. Genetic correlations between growth traits ranged from 0.09 ± 0.01 to 0.88 ± 0.01, thereby implying that, at any age, selection to increase average weight gains will also increase stature. Genetic correlations between BW and average weight gains with scrotal circumferences were all positive and moderate (0.15 ± 0.03 to 0.38 ± 0.01). On the other hand, positive and low genetic associations were estimated between hip height and scrotal circumference at different ages (0.09 ± 0.01 to 0.17 ± 0.02). The results of this study pointed out that selection to larger scrotal circumferences in males will promote changes in average weight gains. In order to obtain Nellore cattle with the stature and size suitable for the production system, both weight gain and hip height should be included in a selection index.  相似文献   

6.
Variability in superovulatory response is a limiting factor for animal breeding programs using Multiple Ovulation and Embryo Transfer (MOET) nucleus schemes. To evaluate genetic factors affecting superovulory response, 1036 multiple ovulation records from 475 Brazilian Nellore embryo donors (daughters of 139 sires), 2.2-20.5-year olds, were analyzed. Traits used to evaluate superovulatory response included the number of palpable corpora lutea (CL), the total number of recovered structures (RS), and the number of viable embryos (VE). Two data sets were used: data from the first flush only or data from the first three flushes. Genetic parameter estimations were carried out using Restricted Maximum Likelihood (REML) methodology, with single- and multiple-trait animal models. According to the data set used, heritability estimates ranged from 0.47 to 0.57 for CL, from 0.20 to 0.65 for VE, and from 0 to 0.34 for RS, and were higher for the data set that used only the first flushing only. For the first flush, genetic correlations were 0.43 between CL and SF, 0.01 between CL and VE, and 0.73 between SF and VE. Repeatability estimates ranged from 0.47 to 0.51. In conclusion, the use of data from the first flush only might result in better estimates of genetic parameters for MOET traits in Nellore females. Furthermore, moderate to high values for repeatability suggested that selection for a high response to superovulation could be made after the first flush.  相似文献   

7.
Genetic parameters and (co)variance components were estimated for weights at birth and at 30, 90 and 180 days of age for Draa goat maintained at Ouarzazate station over a period of 18 years (1988–2005). Records of 1498 kids, the progeny of 46 sires and 404 dams were used in the study. Analyses were carried out by restricted maximum likelihood. Six different animal models including or ignoring maternal genetic or permanent environmental effects were fitted for all traits. The Model 2 with only permanent environmental maternal effects seemed most suitable. Estimates of direct heritability from this model were 0.16 for birth weight and 0.07, 0.11 and 0.11 for weights at 30, 90 and 180 days, respectively. Maternal heritability estimates varied from 0.00 to 0.24 for all traits according to the model used (Models 4–6). Bivariate analysis by Model 2 was also used to estimate genetic correlations between traits. The estimates of genetic and phenotypic correlations among weights were positive and intermediate to high in value. Despite the low estimated heritabilities of body weight traits of Draa goat, there is a small genetic variability that may be exploited to improve growth performance.  相似文献   

8.
The heritability of blood pressure estimated in previous studies may be confounded by the influence of potential blood pressure risk factors. We applied the classical twin design to estimate the contribution of these covariates to blood pressure heritability. The study consisted of 173 dizygotic and 251 monozygotic twin pairs aged 18-34 years, randomly selected from the East Flanders Prospective Twin Survey. In a standardized examination, blood pressure and anthropometry was measured, a questionnaire was completed, and a fasting blood sample was taken. In univariate and bivariate modeling, diastolic and systolic heritability were estimated both unadjusted and adjusted for potential risk factors. Also, covariate interaction was modeled. Bivariate analysis gave heritability estimates of 0.63 (95%CI 0.55-0.59), 0.74 (95%CI: 0.68-0.79), and 0.78 (95%CI: 0.70-0.84) for diastolic, systolic, and cross-trait heritability, respectively. The remaining variances could be attributed to unique environmental influences. These heritability estimates did not change substantially in univariate analyses or after adjustment for risk factors. A sex-limitation model showed that the heritability estimates for women were significantly higher than for men, but the same genetic factors were operating across sexes. Sex and cigarette smoking appeared to be statistically significant interaction terms. The heritability of blood pressure is relatively high in young adults. Potential risk factors of blood pressure do not appear to confound the heritability estimates. However, gene by sex by smoking interaction is indicated.  相似文献   

9.
Random regression (RR) analysis has been recommended to estimate the genetic parameters of longitudinal data. The objective of this study was to evaluate the growth of turkeys using RR models. Data were collected from 957 turkeys and included 15,478 individual body weight recorded during the first week of life and between weeks 2 and 32 by 2-week intervals. To take into account the repeated measurements of weight for each animal, a specific overall growth curve was modelled using a cubic smoothing spline. Animal deviation to this curve was also modelled using an RR function. All data were analysed with the ASReml package. The results showed an increase in heritability estimates over the trajectory and peaked at 0.60 around 20 to 32 weeks of age. Genetic correlations showed that turkeys could be selected at earlier time points, at 12 weeks of age, in order to increase the growth rate. In general, genetic correlation estimates were higher among adjacent ages, decreasing markedly with the increase of distance between ages. Negative genetic correlations were observed between ages.  相似文献   

10.
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.  相似文献   

11.
We estimated genetic parameters for various phases of body and testicular growth until 550 days of age in Nelore cattle, using Bayesian inference, including correlation values and error estimates. Weight and scrotal records of 54,182 Nelore animals originating from 18 farms participating in the Brazilian Nelore Breeding Program (PMGRN) were included. The following traits were measured: weight at standard ages of 120 (W120), 210 (W210), 365 (W365), 450 (W450), and 550 (W550) days; weight gain between 120/210 (WG1), 210/365 (WG2), 365/450 (WG3), 450/550 (WG4), 120/365 (WG5), 120/450 (WG6), 120/550 (WG7), 210/450 (WG8), 210/550 (WG9), and 365/550 (WG10) days of age; scrotal circumference at 365 (SC365), 450 (SC450) and 550 (SC550) days of age, and testicular growth between 365/450 (TG1), 450/550 (TG2) and 365/550 (TG3) days of age. The model included contemporary group (current farm, year and two-month period of birth, sex, and management group) and age of dam at calving, divided into classes as fixed effects. The model also included random effects for direct additive, maternal additive and maternal permanent environmental, and residual effects. The direct heritability estimates ranged from 0.23 to 0.39, 0.13 to 0.39 and 0.32 to 0.56 for weights at standard ages, weight gains and testicular measures, respectively. The genetic correlations between weights (0.69 to 0.94) and scrotal circumferences (0.91 to 0.97) measured at standard ages were higher than those between weight gain and testicular growth (0.18 to 0.97 and 0.36 to 0.77, respectively). The weights at standard ages responded more effectively to selection, and also gave strong correlations with the other traits.  相似文献   

12.
The litter size in Suffolk and Texel-sheep was analysed using REML and Bayesian methods. Litters born after hormonal induced oestrus and after natural oestrus were treated as different traits in order to estimate the genetic correlation between the traits. Explanatory variables were the age of the ewe at lambing, period of lambing, a year*flock-effect, a permanent environmental effect associated with the ewe, and the additive genetic effect. The heritability estimates for litter size ranged from 0.06 to 0.13 using REML in bi-variate linear models. Transformation of the estimates to the underlying scale resulted in heritability estimates from 0.12 to 0.17. Posterior means of the heritability of litter size in the Bayesian approach with bi-variate threshold models varied from 0.05 to 0.18. REML estimates of the genetic correlations between the two types of litter size ranged from 0.57 to 0.64 in the Suffolk and from 0.75 to 0.81 in the Texel. The posterior means of the genetic correlation (Bayesian analysis) were 0.40 and 0.44 for the Suffolk and 0.56 and 0.75 for the Texel in the sire and animal model respectively. A bivariate threshold model seems appropriate for the genetic evaluation of prolificacy in the breeds concerned.  相似文献   

13.
14.
Despite the economic importance of beef cattle production in Brazil, female reproductive performance, which is strongly associated with production efficiency, is not included in the selection index of most breeding programmes due to low heritability and difficulty in measure. The body condition score (BCS) could be used as an indicator of these traits. However, so far little is known about the feasibility of using BCS as a selection tool for reproductive performance in beef cattle. In this study, we investigated the sources of variation in the BCS of Nellore beef cows, quantified its association with reproductive and maternal traits and estimated its heritability. BCS was analysed using a logistic model that included the following effects: contemporary group at weaning, cow weight and hip height, calving order, reconception together with the weight and scores of conformation and early finishing assigned to calves at weaning. In the genetic analysis, variance components of BCS were estimated through Bayesian inference by fitting an animal model that also included the aforementioned effects. The results showed that BCS was significantly associated with all of the reproductive and maternal variables analysed. The estimated posterior mean of heritability of BCS was 0.24 (highest posterior density interval at 95%: 0.093 to 0.385), indicating an involvement of additive gene action in its determination. The present findings show that BCS can be used as a selection criterion for Nellore females.  相似文献   

15.
We investigated genetic associations between mature cow weight (MW) and weaning weight (WW), yearling weight (YW), weight gain from birth to weaning (GBW), weight gain from weaning to yearling (GWY), weaning hip height (WHH), yearling hip height (YHH), scrotal circumference (SC), and age at first calving (AFC). Data from 127,104 Nellore animals born between 1993 and 2006, belonging to Agropecuária Jacarezinho Ltda., were analyzed. (Co)variance components were obtained by the restricted maximum likelihood method, applying an animal model in a multi-traits analysis. The model included direct genetic and residual effects as random effects, the fixed effects of contemporary group, and the linear and quadratic effects of animal age at recording (except for AFC, GBW, and GWY) and age of cow at calving as covariates (except for MW). The numbers of days from birth to weaning and from weaning to yearling were included as covariates for GBW and GWY, respectively. Estimated direct heritabilities were 0.43 ± 0.02 (MW), 0.33 ± 0.01 (WW), 0.36 ± 0.01 (YW), 0.28 ± 0.02 (GBW), 0.31 ± 0.01 (GWY), 0.44 ± 0.02 (WHH), 0.48 ± 0.02 (YHH), 0.44 ± 0.01 (SC), and 0.16 ± 0.03 (AFC). Genetic correlations between MW and productive traits were positive and of medium to high magnitude (ranging from 0.47 ± 0.03 to 0.71 ± 0.01). A positive and low genetic correlation was observed between MW and SC (0.24 ± 0.04). A negative genetic correlation (-0.19 ± 0.03) was estimated between MW and AFC. Selection to increase weight or weight gains at any age, as well as hip height, will change MW in the same direction. Selection for higher SC may lead to a long-term increase in MW. The AFC can be included in selection indices to improve the reproductive performance of beef cattle without significant changes in MW.  相似文献   

16.
The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.  相似文献   

17.
Lamb live weight is one of the key drivers of profitability on sheep farms. Previous studies in Ireland have estimated genetic parameters for live weight and carcass composition traits using a multi-breed population rather than on an individual breed basis. The objective of the present study was to undertake genetic analyses of three lamb live weight and two carcass composition traits pertaining to purebred Texel, Suffolk and Charollais lambs born in the Republic of Ireland between 2010 and 2017, inclusive. Traits (with lamb age range in parenthesis) considered in the analyses were: pre-weaning weight (20 to 65 days), weaning weight (66 to 120 days), post-weaning weight (121 to 180 days), muscle depth (121 to 180 days) and fat depth (121 to 180 days). After data edits, 137 402 records from 50 372 lambs across 416 flocks were analysed. Variance components were derived using animal linear mixed models separately for each breed. Fixed effects included for all traits were contemporary group, age at first lambing of the dam, parity of the dam, a gender by age of the lamb interaction and a birth type by rearing type of the lamb interaction. Random effects investigated in the pre-weaning and weaning weight analyses included animal direct additive genetic, dam maternal genetic, litter common environment, dam permanent environment and residual variances. The model of analysis for post-weaning, muscle and fat depth included an animal direct additive genetic and litter common environment effect only. Significant direct additive genetic variation existed in all cases. Direct heritability for pre-weaning weight ranged from 0.14 to 0.30 across the three breeds. Weaning weight had a direct heritability ranging from 0.17 to 0.27 and post-weaning weight had a direct heritability ranging from 0.15 to 0.27. Muscle and fat depth heritability estimates ranged from 0.21 to 0.31 and 0.15 to 0.20, respectively. Positive direct correlations were evident for all traits. Results revealed ample genetic variation among animals for the studied traits and significant differences between breeds to suggest that genetic evaluations could be conducted on a per-breed basis.  相似文献   

18.
The objective of this study was to compare models for appropriate genetic parameter estimation for milk yield (305-day) in crossbred Holsteins in the tropics, where only records from crossbred cows were available. Eleven models with different effects of contemporary group (CG) at calving (herd-year-season or herd-year-month as fixed, and herd-year-month as random), age at calving (as linear or quadratic covariates, age-class, and age-class x lactation), and dominance were considered. On-farm records from small herds (n < 50) were included or excluded to validate the parameter estimates. Average Information Restricted Maximum Likelihood (AIREML) and Best Linear Unbiased Prediction (BLUP) were used to estimate variance components and breeding values. R-square (R2) and standard error of heritability (h2) were used to determine the appropriate model. The estimates of heritability from most models ranged from 0.18 to 0.22. CG formation of herd-year-month as a random effect slightly lowered the additive genetic variance but considerably decreased the permanent environmental variance. The model with age-class x lactation gave better R2 than other age adjustments. The models including records from smallholders gave similar estimates of heritability and a lower standard error than the models excluding them. The estimate of dominance variance as a proportion of total variance was close to zero. The low ratio of dominance to additive genetic variance suggested that the inclusion of dominance effects in the model was unjustified. In conclusion, the model including the effects of herd-year-month, age-class x lactation, as well as additive genetic, permanent environmental and residual effects, was the most appropriate for genetic evaluation in crossbred Holsteins, where records from smallholders could be included.  相似文献   

19.
《Small Ruminant Research》2010,92(2-3):170-177
Genetic parameters were estimated for birth weight (BW), weaning weight (WW), yearling weight (YW), average daily gain from birth to weaning (ADG1) and average daily gain from weaning to yearling (ADG2) in Moghani sheep. Maximum number of data was 4237 at birth, but only 1389 records at yearling were investigated. The data was collected from 1995 to 2007 at the Breeding Station of Moghani sheep in Jafarabad, Moghan, Iran. (Co)Variance components and genetic parameters were estimated with different models which including direct effects, with and without maternal additive genetic effects as well as maternal permanent environmental effects using restricted maximum likelihood (REML) method. The most appropriate model for each trait was determined based on likelihood ratio tests and Akaike's Information Criterion (AIC). Maternal effects were important only for pre-weaning traits. Direct heritability estimates for BW, ADG1, WW, ADG2 and YW were 0.07, 0.08, 0.09, 0.09 and 0.17, respectively. Fractions of variance due to maternal permanent environmental effects on phenotypic variance were 0.08 for ADG1. Maternal heritability estimates for BW and WW were 0.18 and 0.06, respectively. Multivariate analysis was performed using the most appropriate models obtained in univariate analysis. Direct genetic correlations among studied traits were positive and ranged from 0.37 for BW–ADG2 to 0.85 for ADG1–YW. Maternal genetic correlation estimate between BW and WW was 0.33. Phenotypic and environmental correlation estimates were generally lower than those of genetic correlation. Low direct heritability estimates imply that mass selection for these traits results in slow genetic gain.  相似文献   

20.
Brazilian beef cattle are raised predominantly on pasture in a wide range of environments. In this scenario, genotype by environment (G×E) interaction is an important source of phenotypic variation in the reproductive traits. Hence, the evaluation of G×E interactions for heifer’s early pregnancy (HP) and scrotal circumference (SC) traits in Nellore cattle, belonging to three breeding programs, was carried out to determine the animal’s sensitivity to the environmental conditions (EC). The dataset consisted of 85 874 records for HP and 151 553 records for SC, from which 1800 heifers and 3343 young bulls were genotyped with the BovineHD BeadChip. Genotypic information for 826 sires was also used in the analyses. EC levels were based on the contemporary group solutions for yearling body weight. Linear reaction norm models (RNM), using pedigree information (RNM_A) or pedigree and genomic information (RNM_H), were used to infer G×E interactions. Two validation schemes were used to assess the predictive ability, with the following training populations: (a) forward scheme—dataset was split based on year of birth from 2008 for HP and from 2011 for SC; and (b) environment-specific scheme—low EC (−3.0 and −1.5) and high EC (1.5 and 3.0). The inclusion of the H matrix in RNM increased the genetic variance of the intercept and slope by 18.55 and 23.00% on average respectively, and provided genetic parameter estimates that were more accurate than those considering pedigree only. The same trend was observed for heritability estimates, which were 0.28–0.56 for SC and 0.26–0.49 for HP, using RNM_H, and 0.26–0.52 for SC and 0.22–0.45 for HP, using RNM_A. The lowest correlation observed between unfavorable (−3.0) and favorable (3.0) EC levels were 0.30 for HP and −0.12 for SC, indicating the presence of G×E interaction. The G×E interaction effect implied differences in animals’ genetic merit and re-ranking of animals on different environmental conditions. SNP marker–environment interaction was detected for Nellore sexual precocity indicator traits with changes in effect and variance across EC levels. The RNM_H captured G×E interaction effects better than RNM_A and improved the predictive ability by around 14.04% for SC and 21.31% for HP. Using the forward scheme increased the overall predictive ability for SC (20.55%) and HP (11.06%) compared with the environment-specific scheme. The results suggest that the inclusion of genomic information combined with the pedigree to assess the G×E interaction leads to more accurate variance components and genetic parameter estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号