首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinhibition of photosynthesis and subsequent recovery were studied in cultures of the unicellular green alga Chlamydomonas reinhardtii L. (wt strain 137 c mating type +) acclimated at high (27°C) and low (12°C) temperature, Photoinhibition was assayed by fluorescence kinetics (77K) and oxygen evolution measurements under growth temperature conditions Inhibition of 50% was obtained by exposing cultures acclimated at high temperature to a photosynthetic photon flux density (PPFD) of 1 600 μmol m−2 S−1 at. 27°C. and cultures acclimated at low temperature to a PPFD of 900 μmol m−2 s−1 at 12°C When the photoinhibitory conditions were shifted it was revealed that algae acclimated at low temperature had acquired an increased resistance to photoinhibition at both 12 and 27°C. Furthermore, acclimation at low temperature increased the capacity to recover from 50% photoinhibition at both 12 and 27°C Studies of photoinhibition in the presence of the protein synthesis inhibitor, chloramphenicol, revealed that in response to acclimation at low temperature during growth the algae became more dependent on protein synthesis to avoid photoinhibition. It is suggested that acclimation at low temperature rendered C. reinhardtii an increased resistance to photoinhibition by. increasing the rate of turnover of photodamaged proteins in photosystem II (PS II). However, we cannot exclude the possibility that the increased resistance to photoinhibition of C. reinhardtii acclimated at low temperature also involves modifications of the mechanism of photoinhibition.  相似文献   

2.
在热带北缘地区,冬季气温较夏季下降10℃左右,虽然热带植物对零上低温敏感,但是大部分热带树木能够适应热带北缘地区的冬季气温,其光合生理机制并不清楚。我们通过测定种植在热带北缘地区(21°54′N,101°46′E)的两种热带树木(几内亚格木和降香黄檀)的光系统Ⅰ和Ⅱ活性以及光系统Ⅰ和Ⅱ的能量分配的季节变化,发现这两个树种的光系统Ⅰ和Ⅱ活性在冬季并没有下降。两个树种的光系统Ⅱ的有效量子产额在冬季明显下降,同时伴随着热耗散激发。在冬季,环式电子传递的激发与热耗散的激发呈现显著的正相关。环式电子传递的激发使得氧化态P700比例的上升,从而避免了光系统Ⅰ受体端的过度还原。化学试剂抗霉素A(PGR5途径环式电子传递的一种特异性抑制剂)处理过的叶片较对照组表现出更强光损伤程度。这些结果表明环式电子传递的激发是热带树木适应热带北缘地区冬季低温的一个重要的光合生理机制。  相似文献   

3.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

4.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

5.
Prior work demonstrated that Heuchera americana, an evergreen herb inhabiting the deciduous forest understory in the southeastern United States, has a 3-4-fold greater photosynthetic capacity under the low-temperature, strong-light, open canopies of winter compared to the high-temperature, weak-light, closed canopies of summer. Moreover, despite the reductions in soil nitrogen, the chilling temperatures, and the increased quantum flux associated with winter, chronic photoinhibition was not observed in this species at this time of the year. We were interested in the photosynthetic acclimation and photoinhibition characteristics of this species when grown under contrasting light and nitrogen regimes. Newly expanded shade-acclimated leaves of forest-grown plants exposed to strong light varying in intensity and duration at 25°C showed a reduction in Fv/Fm (the ratio of variable to maximum room temperature chlorophyll fluorescence measured after dark adaptation), which was correlated with a decline in øa (the intrinsic quantum yield of CO2-saturated O2 evolution on an absorbed light basis). Plants grown in the glasshouse under contrasting light (high and low light; HL and LL, respectively) and nitrogen supply (high and low nitrogen; HN and LN, respectively) regimes showed that photosynthetic acclimation to HL was impaired in LN regimes. The HL-LN plants also had the lowest values of Fv/Fm and of ø on both incident and absorbed light bases and had 50% less chlorophyll (per unit area) compared to plants from other growth regimes. Controlled exposure to bright light at low temperatures (2-3°C) for 3 h resulted in a sharp decrease in Fv/Fm (and rise in Fo, the minimum fluorescence yield) in all plants. Shade-grown plants from both N regimes were highly susceptible to chronic photoinhibition, as indicated by a greater reduction in Fv/Fm and incomplete recovery after 18 h in weak light at 25°C. The HL-HN plants were the least susceptible to chronic photoinhibition, having the smallest decrease in Fv/Fm with near full recovery within 6 h. The decline in Fv/Fm in HL-LN plants was comparable to that of shade-acclimated plants, but recovered fully within 6 h. Low-N plants from both light regimes displayed greater increases in Fo which did not return to pretreatment levels after 18 h of recovery. These studies indicate that HL-LN plants were sensitive to chronic photoinhibition and, at the same time, had a high capacity for dynamic photoinhibition. Experimental garden studies showed that H. americana grown in an open field in summer were photoinhibited and did not fully recover overnight or during extended periods of weak light. These results are discussed in relation to the photosynthetic acclimation of H. americana under natural conditions.  相似文献   

6.
Growth of winter cereals at low, nonfreezing temperatures is essential for the establishment of a cold-hardy state and subsequent survival of the overwintering plant. In this paper, I describe the consequences of growth and development of Secale cereale L. cv. Puma at cold-hardening temperatures with respect to leaf morphology, anatomy, and biochemistry, and with particular emphasis on their relationship to photosynthetic acclimation. Low temperature-induced structural and functional alterations at the level of ribulose bisphosphate carboxylase-oxygenase and the chloroplast thylakoid membrane are described and related to overall photosynthetic efficiency and capacity for CO2 utilization. Growth and development at cold-hardening temperatures appear to result in changes in protein conformation and membrane organization, but not in basic composition. It is proposed that developmental temperature imparts a significant effect on the assembly of these multimeric, photosynthetic components, which leads to distinct structural and functional changes.  相似文献   

7.
Intact Lemna gibba plants were photoinhibited under anaerobic conditions on illumination with monochromatic light which selectively excited the photosystems. Photoinhibition was less when PS 1 was excited and greatest when mainly PS 2 was excited, which suggests that PS 2 was most damaged by photoinhibition induced in complete absence of O2 and CO2.The illumination of plants with monochromatic light exciting PS 1, at different O2 concentrations (in CO2 deficient conditions), showed that PS 1 photoinhibition was increased at the low O2 concentrations. The damage to PS 1 was more evident at 2% O2 than at the higher O2 concentrations.CO2 as well as O2 at atmospheric concentration, (air), was necessary for complete protection of the plant from photoinhibition when both photosystems were excited either separately or together.Abbreviations I irradiance, photon fluence rate - PCO photosynthetic carbon oxidation cycle - PCR photosynthetic carbon reduction cycle - PS 1 photosystem 1 - PS 2 photosystem 2  相似文献   

8.
The photophysiology of turf algal communities was studied in situ on a temperate reef off the coast of South Australia. Algal communities were grown on artificial substrate at depths of 2, 4, and 10 m. To investigate the response of the algal communities to changing light environments in both the short and long term, reciprocal transplantation experiments were conducted among these depths on a seasonal basis. The extent of photoinhibition was assessed every 3 h for the first 2 days following transplantation and then on a daily basis for 16 days after transplantation. Photosynthetic acclimation was assessed using photosynthesis–light curves obtained from transplanted and non‐transplanted turfs after the acclimation period. Transplanted turfs responded very quickly to the light shift. Algae acclimated to low light (10 m depth) were highly susceptible to photoinhibition and photodamage, having greater decreases in maximum and effective quantum yields than turfs from shallower depths. Yield recovery and acclimation usually occurred very rapidly in algae from all depths (3–5 days), but were faster in spring and summer compared with winter. Changes in photosynthetic capacity (across seasons, depths, and after transplantation to a different depth) were accompanied by changes in respiration, so that the ratio of net to gross photosynthetic capacity (Pmnet : Pmgross) remained high and constant over the whole range of light levels. We discuss the possible acclimation strategies of turfs, taking into account the balance between photoacclimation, production, and growth strategy.  相似文献   

9.
Xu  C.-C.  Lin  R.-C.  Li  L.-B.  Kuang  T.-Y. 《Photosynthetica》2000,38(2):221-226
The mechanistic basis for protection of exogenous ascorbate against photoinhibition at low temperature was examined in leaves of rice (Oryza sativa L.). Exposure of intact leaves to chilling temperature resulted in a drastic decrease in the speed of development of non-photochemical fluorescence quenching (NPQ). This was related to the low temperature-imposed restriction on the formation of the fast relaxing component of NPQ (qf). Feeding with 20 mM ascorbate markedly increased the rate of qf development at chilling temperature due primarily to the enhanced rate of zeaxanthin (Z) formation. On the other hand, ascorbate feeding had no influence on photosystem 2 (PS2)-driven electron flow. The reduced state of the PS2 primary electron acceptor QA decreased in ascorbate-fed leaves exposed to high irradiance at chilling temperature owing to the increased Z-associated thermal energy dissipation in the light-harvesting antenna system of PS2. Furthermore, ascorbate feeding increased the photosynthetic apparatus of rice leaves to resist photoinhibition at low temperature. The protective effect of exogenous ascorbate was fully accounted for by the enhanced xanthophyll cycle activity.  相似文献   

10.
To characterize underwater photosynthetic performance in some terrestrial plants, we determined (i) underwater light acclimation (ii) underwater photosynthetic response to dissolved CO2, and (iii) underwater photosynthetic capacity during prolonged submergence in three species that differ in submergence tolerance: Phalaris arundinacea, Rumex crispus (both submergence-tolerant) and Arrhenatherum elatius (submergence-intolerant). None of the species had adjusted to low irradiance after 1 week of submergence. Under non-submerged (control) conditions, only R. crispus displayed shade acclimation. Submergence increased the apparent quantum yield in this species, presumably because of the enhanced CO2 affinity of the elongated leaves. In control plants of the grass species P. arundinacea and A. elatius, CO2 affinities were higher than for R. crispus. The underwater photosynthetic capacity of R. crispus increased during 1 month of submergence. In P. arundinacea photosynthesis remained constant during 1 month of submergence at normal irradiance; at low irradiance a reduction in photosynthetic capacity was observed after 2 weeks, although there was no tissue degeneration. In contrast, underwater photosynthesis of the submergence-intolerant species A. elatius collapsed rapidly under both irradiances, and this was accompanied by leaf decay. To describe photosynthesis versus irradiance curves, four models were evaluated. The hyperbolic tangent produced the best goodness-of-fit, whereas the rectangular hyperbola (Michaelis-Menten model) gave relatively poor results.  相似文献   

11.
Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (P N) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (Fo) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 − qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity.  相似文献   

12.
The photosynthetic acclimation of Tradescantia albiflora (Kunth), a trailing ground species naturally occurring in the deep shade of rainforests, was studied in relation to growth irradiance (glasshouse; direct light and 1 to 4 layers of shade cloth, giving 100 to 1.4% relative growth irradiance). Contrary to other irradiance studies of higher plants grown in natural habitats or controlled light environments, the chlorophyll a/b ratios of Tradescantia leaves were low (∼2.2) and constant. Acclimation to growth irradiance caused no changes in the relative amounts of specific Chl-proteins or the numbers of photosystem I (PSI) and PSII reaction centres on a chlorophyll basis, indicating that the light-harvesting antenna sizes of PSII and PSI, as well as the photosystem stoichiometry, were independent of growth irradiance. However, the amount of cytochrome f and ATP synthase on a chlorophyll basis increased with increasing the relative growth irradiance from 1.4 to 35%, showing acclimation of electron transport and photophosphorylation capacity. The photosynthetic capacity and ribulose 1, 5-bisphosphate carboxylase (EC 4.1.1.39) activity also increased with increase of the growth irradiance to 35%. Beyond that, the inflexible PSII/PSI stoichiometry and shade-type photosystem II/light-harvesting units in Tradescaniia are a disadvantage for long-term exposure to high irradiance since the leaves are more prone to photoinhibition.  相似文献   

13.
Five winter and five spring wheat ( Triticum aestivum L.) cultivars were grown under either control conditions (20°C/250 photosynthetic photon flux density (PPFD) [μmol m−2 s−1]), high irradiance (20°C/800 PPFD) or at low temperature (either 5°C/250 PPFD or 5°C/50 PPFD). To eliminate any potential bias, the wheat cultivars were arbitrarily chosen without any previous knowledge of their freezing tolerance or photosynthetic competence. We show that the differential susceptibilities to photoinhibition exhibited between spring and winter wheat cultivars, as assessed by chlorophyll fluorescence cannot be explained on the basis of either growth irradiance or low growth temperature per se. The role of excitation pressure is discussed. We assessed the correlation between susceptibility to low-temperature photoinhibition, maximum ribulose 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) and NADP-dependent malate dehydrogenase (EC 1.1.1.82) activities, chlorophyll and protein concentrations and freezing tolerance determined by electrolyte leakage. Susceptibility to photoinhibition is the only parameter examined that is strongly and negatively correlated with freezing tolerance. We suggest that the assessment of susceptibility to photoinhibition may be a useful predictor of freezing tolerance and field survival of cereals.  相似文献   

14.
胡文海  肖宜安 《植物研究》2022,42(6):1052-1061
植物叶片光合作用具有高度的空间异质性,叶绿素荧光成像技术为叶片光合异质性的研究提供了便利,但叶片光合异质性的定量分析并没有得到广泛应用。本文利用ImagingPAM叶绿素荧光成像系统,获得 中亚热带地区越冬期小叶榕(Ficus microcarpa)阳生叶和阴生叶的叶绿素荧光参数图像,并利用仪器的分析软件对其进行分析,定量比较了阳生叶和阴生叶的光合异质性特征。研究发现:越冬期小叶榕阳生叶的光合异质性和光抑制程度明显高于阴生叶,变异系数可作为光合异质性的定量指标。低温强光导致阳生叶坏死率(PLN)达4.30%,并有53.30%的区域处于严重光抑制(0<Fv/Fm<0.627),但仍有42.27%的区域仅为轻度光抑制(0.627≤ Fv/Fm<0.800)。而低温弱光并未造成阴生叶坏死和严重光抑制。通过对光系统Ⅱ(PSⅡ)的实际光合效率 (Y(Ⅱ))、调节性能量耗散的量子产额(Y(NPQ))和非调节性能量耗散的量子产额(Y(NO))荧光参数异质性的定量分析表明,阳生叶具有相对较高的光化学能力,阴生叶则具有相对较高的热耗散能力;冬季强光虽然会导致小叶榕阳生叶PSⅡ严重激发压积累,存在严重光抑制的潜在风险,但其致死面积并不大,叶片中仍存在一定面积低激发压的低风险区,而低温弱光下的阴生叶则主要以低风险区域为主。  相似文献   

15.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

16.
We compared the sensitivity to cold stress, in terms of photosynthetic capacity and changes in chlorophyll fluorescence of photosystem 2 (PS2), of an evergreen and a deciduous oak species, which co-occur in the southeastern United States. We predicted that the evergreen species, Quercus virginiana, which must endure winter, is likely to have an inherently greater capacity for energy dissipation and to be less susceptible to chilling stress than the deciduous species, Quercus michauxii. Short-term cold stress in both species lead to greater than 50 % reduction in maximum photosynthetic rates, 60-70 % reduction in electron transport, and irreversible quenching of PS2 fluorescence. The kinetics of recovery in the dark after exposure to 1 h high irradiance (1000 μmol m-2 s-1) and chilling (5 °C) showed that the evergreen Q. virginiana exhibited more protective qE and less irreversible quenching (qI) than the deciduous Q. michauxii. The large qE which we observed in Q. virginiana suggests that the capacity for photoprotection at low temperatures is not induced by a long-term acclimation to cold but preexists in evergreen leaves. This capacity may contribute to the ability of this species to maintain leaves during the winter. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Winter wheat (Triticum aestivum L. cv Monopol), spring wheat (Triticum aestivum L. cv Katepwa), and winter rye (Secale cereale L. cv Musketeer) grown at 5[deg]C and moderate irradiance (250 [mu]mol m-2 s-1) (5/250) exhibit an increased tolerance to photoinhibition at low temperature in comparison to plants grown at 20[deg]C and 250 [mu]mol m-2 s-1 (20/250). However, 5/250 plants exhibited a higher photosystem II (PSII) excitation pressure (0.32-0.63) than 20/250 plants (0.18-0.21), measured as 1 - qP, the coefficient of photochemical quenching. Plants grown at 20[deg]C and a high irradiance (800 [mu]mol m-2 s-1) (20/800) also exhibited a high PSII excitation pressure (0.32-0.48). Similarly, plants grown at 20/800 exhibited a comparable tolerance to photoinhibition relative to plants grown at 5/250. In contrast to a recent report for Chlorella vulgaris (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694), this tolerance to photoinhibition occurs in winter rye with minimal adjustment to polypeptides of the PSII light-harvesting complex, chlorophyll a/b ratios, or xanthophyll cycle carotenoids. However, Monopol winter wheat exhibited a 2.5-fold stimulation of sucrosephosphate synthase activity upon growth at 5/250, in comparison to Katepwa spring wheat. We demonstrate that low-temperature-induced tolerance to photoinhibition is not a low-temperature-growth effect per se but, instead, reflects increased photosynthetic capacity in response to elevated PSII excitation pressure, which may be modulated by either temperature or irradiance.  相似文献   

18.
In the pursuit of knowledge on the biological behavior of Brazilian Atlantic Forest tree species, this study evaluated the susceptibility of the light-demanding species, Schinus terebinthifolia Raddi., Pseudobombax grandiflorum (Cav.) A. Robyns and Joannesia princeps Vell., and of the shade-tolerant species, Hymenaea courbaril L. var. stilbocarpa and Lecythis pisonis Camb, to photoinhibition and acclimation capacity. These species were first cultivated under two irradiance conditions, I20 (20% direct sunlight radiation) and I100 (all-sky or direct sunlight) and then transferred from I20 to I100. The effects of the sudden increase in light radiation intensity on photosynthetic activity were then evaluated through chlorophyll (Chl) fluorescence imaging, HPLC xanthophylls analysis, and cell membrane lipid peroxidation measurements. Light-demanding species were found to present a higher photochemical efficiency and higher acclimation capacity under high light irradiance than shade-tolerant species. The higher photoinhibition tolerance observed in light-demanding species was associated to their higher capacity for photochemical dissipation and dissipation of excess excitation energy via the xanthophyll cycle, leading to a lower ROS generation. The obtained results suggested that a knowledge of acclimation capacity, by means of Chl fluorescence imaging yields, is a useful indicator of species successional grouping.  相似文献   

19.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

20.
The relationship between the microclimate within an Oak-Hickory forest and photosynthetic characters of two resident evergreen herbs with contrasting leaf phenologies was investigated on a monthly basis for 1 full year. Heuchera americana has leaf flushes in the spring and fall, with average leaf life spans of 6–7 months. Hexastylis arifolia produces a single cohort of leaves each spring with a leaf life span of 12–13 months. We predicted that among evergreen plants inhabiting a seasonal habitat, a species for which the frequency of leaf turnover is greater than the frequency of seasonal extremes would have a greater annual range in photosynthetic capacity than a species that only produced a single flush of leaves during the year. Photosynthetic parameters, including apparent quantum yield, maximum photosynthetic capacity (Pmax), temperature of maximum photosynthesis, photochemical efficiency of PSII and leaf nitrogen (N) and chlorophyll concentrations, were periodically measured under laboratory conditions in leaves sampled from natural populations of both species. Mature leaves of both species acclimated to changing understory conditions with the mean seasonal differences being significantly greater for Heuchera than for Hexastylis. Area based maximum photosynthetic rates at 25°C were approximately 250% and 100% greater in winter leaves than summer leaves for Heuchera and Hexastylis respectively. Nitrogen concentrations were highest in winter leaves. Chlorophyll concentrations were highest in summer leaves. Low Pmax/N values for these species suggest preferential allocation of leaf nitrogen into non-photosynthetic pools and/or light-harvesting function at the expense of photosynthetic enzymes and electron transport components. Despite the increase in photosynthetic capacity, there was evidence of chronic winter photoinhibition in Hexastylis, but not in Heuchera. Among these ecologically similar species, there appears to be a trade-off between the frequency of leaf production and the balance of photosynthetic acclimation and photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号