首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.  相似文献   

2.
Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training   总被引:10,自引:0,他引:10  
The purposes of this study were to determine whether exercise training induces increases in skeletal muscle antioxidant enzymes and to further characterize the relationship between oxidative capacity and antioxidant enzyme levels in skeletal muscle. Male Sprague-Dawley rats were exercise trained (ET) on a treadmill 2 h/day at 32 m/min (8% incline) 5 days/wk or were cage confined (sedentary control, S) for 12 wk. In both S and ET rats, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were directly correlated with the percentages of oxidative fibers in the six skeletal muscle samples studied. Muscles of ET rats had increased oxidative capacity and increased GPX activity compared with the same muscles of S rats. However, SOD activities were not different between ET and S rats, but CAT activities were lower in skeletal muscles of ET rats than in S rats. Exposure to 60 min of ischemia and 60 min of reperfusion (I/R) resulted in decreased GPX and increased CAT activities but had little or no effect on SOD activities in muscles from both S and ET rats. The I/R-induced increase in CAT activity was greater in muscles of ET than in muscles of S rats. Xanthine oxidase (XO), xanthine dehydrogenase (XD), and XO + XD activities after I/R were not related to muscle oxidative capacity and were similar in muscles of ET and S rats. It is concluded that although antioxidant enzyme activities are related to skeletal muscle oxidative capacity, the effects of exercise training on antioxidant enzymes in skeletal muscle cannot be predicted by measured changes in oxidative capacity.  相似文献   

3.
The present study was designed to determine the effects of Ganoderma lucidum polysaccharides (GL-PS) on exhaustive exercise-induced oxidative stress in skeletal muscle tissues of mice. The mice were divided into four groups (three GL-PS administered groups and the control group). The control group was administered with distilled water and GL-PS administered groups were administered with GL-PS (50, 100 and 200 mg/kg body weight per day). After 28 days, the mice performed an exhaustive swimming exercise, along with the determination of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) activities and malondialdehyde (MDA) levels in the skeletal muscle of mice. The results showed that GL-PS could increase antioxidant enzymes activities and decrease the MDA levels in the skeletal muscle of mice. This study provides strong evidence that GL-PS supplementation possessed protective effects against exhaustive exercise-induced oxidative stress.  相似文献   

4.
Several different exercise regimens varied in the severity of tissue damage induced. Therefore, this study investigated the effects of a single bout of exercise versus endurance training in heart and skeletal muscles with different predominant fiber types on indices of mitochondrial, endoplasmic reticulum (ER) integrity and protein degradation. Male Wistar rats performed different treadmill exercise protocols: exhaustive, maximal exhaustive, eccentric, training and exhaustive exercise after training. The maximal and eccentric exercises resulted in a significant loss of integrity of the sarcoplasmic and ER muscle, while no changes were observed in cardiac muscle. Mitochondrial membrane fluidity measured by the fluorescence polarization method was significantly increased post-acute exercises in heart and oxidative muscles. Regular exercise can stabilize and preserve the viscoelastic nature of mitochondrial membranes in both tissues. The highest increase in carbonyl content was obtained in heart after exhaustive exercise protocol, from 1+/-0.1 to 3.6+/-0.14 nmol mg protein(-1), such increase were not found after regular exercise with values significantly decreased. Nitrate heart levels showed attenuated generation of nitric oxide after training. Muscle protein oxidation was produced in all exhaustive exercises including eccentric exercise.  相似文献   

5.
The sex-specific divergence of antioxidant pathways in fetal organs of opposite-sex twin is unknown and remains urgently in need of investigation. Such study faces many challenges, mainly the ethical impossibility of obtaining human fetal organs. Opposite-sex sheep twins represent a unique model for studying a sex dimorphism for antioxidant systems. The activity of total superoxide dismutase (SOD), SOD1, SOD2, glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT), the content of total glutathione, reduced glutathione (GSH), and oxidized glutathione (GSSG) were measured in brain, lung, liver, kidney, and skeletal muscles of female and male fetuses collected from sheep twin pregnancies at day 65 of gestation. Lipid peroxidation was assessed by measuring melondialdehyde (MDA) tissue content. Male brain has greater total SOD and SOD1 activities than female brain. Female liver has greater SOD2 activity than male liver. Male liver has greater GR activity than female liver. Male liver has higher total GSH and GSSG content than female liver. Male skeletal muscles have higher total GSH, GSH, and GSSG content than female skeletal muscles. Female brain and liver have higher MDA content than male brain and liver. This is the first report of a sex dimorphism for fetal organ antioxidative pathways. Brain, liver, and skeletal muscles of male and female fetuses display distinct antioxidant pathways. Such sexually dimorphic responses to early life oxidative stress might be involved in the sex-related difference in fetal development that may have a long-term effect on offspring. Our study urges researchers to take into consideration the importance of sex as a biologic variable in their investigations.  相似文献   

6.
The influences of selenium deficiency (Se-D), chronic training, and an acute bout of exercise on hepatic and skeletal muscle antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), as well as glutathione S-transferase (GST) and tissue lipid peroxidation, were investigated in post-weaning male Sprague-Dawley rats. Se-D per se depleted GPX in both liver and skeletal muscle but had no effect on SOD or catalase activity. One hour of treadmill running (20 m/min, 0% grade and 27 m/min, 15% grade for untrained and trained rats, respectively) significantly elevated hepatic catalase and cytosolic SOD activity; more prominent activations were found in the Se-D or untrained rats, whereas skeletal muscle antioxidant enzymes were little affected. Ten weeks of training (1 h/day, 5 days/week at 27 m/min, 15% grade) increased hepatic mitochondrial SOD by 23% (P less than 0.05) in Se-D rats. Both hepatic mitochondrial and cytosolic GPX were decreased by training whereas GPX was increased twofold in skeletal muscle mitochondria. Se-independent GPX was elevated by training only in the skeletal muscle mitochondria of Se-D rats. Lipid peroxidation (malondialdehyde formation) was increased by an acute bout of exercise in hepatic mitochondria of the untrained rats and in skeletal muscle mitochondria of the Se-D rats. These data indicate that antioxidant enzymes in liver and skeletal muscle are capable of adapting to selenium deficiency and exercise to minimize oxidative injury caused by free radicals.  相似文献   

7.
It has been reported that exercise induces oxidative stress and causes adaptations in antioxidant defences. The aim of this study was to determine the adaptations of lymphocytes to the oxidative stress induced by an exhaustive exercise. Nine voluntary male subjects participated in the study. The exercise was a cycling mountain stage (171.8 km), and the cyclists took a mean of 283 min to complete it. Blood samples were taken the morning of the cycling stage day, after overnight fasting, and 3 h after finishing the stage. We determined the blood glutathione redox status (GSSG/GSH), lymphocyte antioxidant enzyme activities and superoxide dismutase (SOD) levels; the plasma and lymphocyte vitamin E levels; the serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities and urate levels; the plasma carotene and malonaldehyde (MDA) levels; and the lymphocyte carbonyl index. The cycling stage induced significant increases in blood-oxidized (glutathione/GSSG), plasma MDA and serum urate levels. The exercise also produced increases in CK and LDH serum activities. The mountain cycling stage induced significant increases in lymphocyte vitamin E levels, glutathione peroxidase and glutathione reductase activities as well as increased SOD activity and protein levels. The protein carbonyl levels increased significantly in lymphocytes after the stage. In conclusion, in spite of increasing antioxidant defences in response to the oxidative stress induced by the exhaustive exercise, lymphocyte oxidative damage was produced after the stage as demonstrated by the increased carbonyl index even in very well trained athletes.  相似文献   

8.
Female beagle dogs were treadmill trained 40 km/day at 5.5-6.8 km/h, 15% upgrade, 5 days/wk for 55 wk. With training, hepatic and red gastrocnemius (RG) total glutathione increased, glutathione peroxidase (GPX) and glutathione reductase (GRD) increased in all the leg muscles studied, and hepatic glutathione S-transferase (GST) activity increased. Joint immobilization (11 wk) did not affect GPX, GRD, and GST of RG, but total glutathione decreased. Male Han Wistar rats were treadmill trained 2 h/day at 2.1 km/h, 5 days/wk for 8 wk. With training, hepatic total glutathione and leg muscle GPX increased but GRD of RG decreased, perhaps because of an increased muscle flavo-protein breakdown during exhaustive training. gamma-Glutamyl transpeptidase was higher in the trained leg muscles. Exhaustive exercise decreased muscle gamma-glutamyl transpeptidase of only control leg muscle, depleted muscle (lesser extent in trained rats) and liver total glutathione of both groups, decreased GRD only in untrained RG, and increased hepatic GST. Endurance training elevated the antioxidant and detoxicant status of muscle and liver, respectively.  相似文献   

9.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels.  相似文献   

10.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
有鳞类(蛇和蜥蜴)具有较发达的嗅器和犁鼻器,对其不同种类嗅觉结构的认识有助于阐明爬行动物化学感觉的进化。本文采用组织学方法比较了草原沙蜥(Phrynocephalus frontalis)、荒漠沙蜥(P. przewalskii)、密点麻蜥(Eremias multiocellata)和秦岭滑蜥(Scincella tsinlingensis)的嗅器及犁鼻器。结果发现,草原沙蜥的鼻腔较为狭长,秦岭滑蜥呈梨形,其他两种蜥蜴的鼻腔略成圆形。秦岭滑蜥的嗅上皮最厚,其次是密点麻蜥和草原沙蜥,荒漠沙蜥最薄。犁鼻器主要由犁鼻腔、犁鼻感觉上皮、犁鼻神经及蘑菇体等组成,没有腺体。草原沙蜥和荒漠沙蜥的犁鼻腔较为宽阔,密点麻蜥和秦岭滑蜥的较窄。4种蜥蜴的犁鼻感觉上皮均较嗅上皮厚,蘑菇体向后逐渐缩小至消失,犁鼻感觉上皮成闭环状,包围犁鼻腔。密点麻蜥和秦岭滑蜥的犁鼻感觉上皮位于犁鼻器的背侧,蘑菇体位于腹侧;与此不同,两种沙蜥的犁鼻感觉上皮偏向于犁鼻器的腹内侧,蘑菇体位于背外侧。密点麻蜥的犁鼻感觉上皮最厚,其次为秦岭滑蜥,两种沙蜥最薄;秦岭滑蜥犁鼻感觉上皮的感觉细胞密度最高,其次是密点麻蜥,两种沙蜥最低。这些结果提示,密点麻蜥和秦岭滑蜥对嗅觉信号的依赖和投入较两种沙蜥多;4种蜥蜴犁鼻器的结构差异间接地佐证了有鳞类犁鼻器系统发生的特异性。  相似文献   

13.
We investigated the hypothesis that muscles of different oxidative potential would display differences in sarcoplasmic reticulum (SR) Ca2+ handling responses to repetitive contractile activity and recovery. Repetitive activity was induced in two muscles of high oxidative potential, namely, soleus (SOL) and red gastrocnemius (RG), and in white gastrocnemius (WG), a muscle of low oxidative potential, by stimulation in adult male rats. Measurements of SR properties, performed in crude homogenates, were made on control and stimulated muscles at the start of recovery (R0) and at 25 min of recovery (R25). Maximal Ca2+-ATPase activity (Vmax, micromol x g protein(-1) x min(-1)) at R0 was lower in stimulated SOL (105 +/- 9 vs. 135 +/- 7) and RG (269 +/- 22 vs. 317 +/- 26) and higher (P < 0.05) in WG (795 +/- 32 vs. 708 +/- 34). At R25, Vmax remained lower (P < 0.05) in SOL and RG but recovered in WG. Ca2+ uptake, measured at 2,000 nM, was depressed (P < 0.05) in SOL and RG by 34 and 13%, respectively, in stimulated muscles at R0 and remained depressed (P < 0.05) at R25. In contrast, Ca2+ uptake was elevated (P < 0.05) in stimulated WG at R0 by 9% and remained elevated (P < 0.05) at R25. Ca2+ release, unaltered in SOL and RG at both R0 and R25, was increased (P < 0.05) in stimulated WG at both R0 and R25. We conclude that SR Ca2+-handling responses to repetitive contractile activity and recovery are related to the oxidative potential of muscle.  相似文献   

14.
本研究采用免疫荧光组织化学染色法和蛋白免疫印迹法比较研究了后肢去负荷大鼠(Rattus norvegicus)和冬眠不活动达乌尔黄鼠(Spermophilus dauricus)不同类型骨骼肌氧化应激水平和抗氧化防御能力及与肌萎缩之间的关系。结果显示,后肢去负荷14 d后,大鼠比目鱼肌和趾长伸肌肌萎缩程度显著升高,过氧化氢和丙二醛水平增加,Nrf2介导的抗氧化信号通路及下游抗氧化酶蛋白表达及活性显著下降;而冬眠不活动达乌尔黄鼠骨骼肌中肌萎缩指标并未出现变化,氧化应激水平维持夏季组水平,抗氧化酶和调控因子出现不同程度升高。研究表明,后肢去负荷导致非冬眠大鼠骨骼肌氧化应激水平升高,抗氧化防御能力减弱,可能是导致大鼠废用性肌萎缩的重要机制之一;而冬眠动物达乌尔黄鼠骨骼肌在自然废用状态下,抗氧化防御能力增强可能是防止自然冬眠不活动引起的废用性肌萎缩的重要机制。  相似文献   

15.
The majority of radiation injury in cells depends on oxidative stress. Irradiation and absorbed doses, duration of the irradiation and the susceptibility of the tissue against radiation are the factors that cause variations on living cells. The aim of this study was to investigate gamma radiation-induced oxidative damage in erythrocytes after thyroid scintigraphy with Tc-99m pertechnetate. Fifteen patients (8 women and 7 men) who performed thyroid scintigraphy with Tc-99m pertechnetate were included in this study. The median age was 52 +/- 8 years (range 33-65). The blood samples were taken from patients just before, 1 hour after and three hours after injection of radiopharmaceutical. Malondialdehyde (MDA) and antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) levels were measured to evaluate the gamma radiation induced oxidative damage. No difference was detected in any final measurement activities of erythrocyte antioxidant enzyme such as SOD and GPX in the direct comparison between the before and after injection of the radiopharmaceutical groups, except erythrocyte CAT activities measured 1 hour after and 3 hours after injection of the radiopharmaceutical (p < 0.05). MDA levels were decreased 1 hour after and 3 hours after injection of the radiopharmaceutical.  相似文献   

16.
Oxidative stress in patients with multiple sclerosis   总被引:5,自引:0,他引:5  
It is well known that brain and nervous system cells are prone to oxidative damage because of their relatively low content of antioxidants, especially enzymatic ones, and of the high levels of both membrane polyunsaturated fatty acids (PUFA) and iron easily released from injured cells. We have investigated the oxidative stress in the blood (plasma, erythrocytes and lymphocytes) of 28 patients affected with multiple sclerosis (MS) and of 30 healthy age matched controls, by performing a multiparameter analysis of non-enzymatic and enzymatic antioxidants--Vitamin E (Vit. E), ubiquinone (UBI), reduced and oxidized glutathione (GSH, GS-SG), superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and fatty acid patterns of phospholipids (PL-FA). PL-FA and Vit. E were assayed by GC-MS; UBI and GSH/GS-SG by HPLC; SOD, GPX and CAT by spectrophotometry. In comparison to controls, patients with MS showed significantly reduced levels of plasma UBI (0.21 +/- 0.10 vs. 0.78 +/- 0.08 mg/ml, p < 0.001), plasma Vit. E (7.4 +/- 2.1 vs. 11.4 +/- 1.8 mg/ml, p < 0.01), lymphocyte UBI (8.1 +/- 4.0 vs. 30.3 +/- 7.2 ng/ml blood, p < 0.001) and erythrocyte GPX (22.6 +/- 5.7 vs. 36.3 +/- 6.4 U/g Hb, p < 0.001). This blood antioxidant deficiency was associated with plasma levels of PL-PUFA--especially C20:3 n-6 and C20:4 n-6--significantly higher than controls. In conclusion, the blood of patients with MS shows the signs of a significant oxidative stress. The possibility of counteracting it by antioxidant administration plus an appropriate diet, might represent a promising way of inhibiting the progression of the disease. Antioxidant supplements should include not only GSH repleting agents, but also Vit. E, ubiquinol, and selenium.  相似文献   

17.
18.
As energetic metabolism is crucial for muscles, they develop different adaptations to respond to fluctuating demand among muscle types. Whereas quantitative characteristics are known, no study described simultaneously quantitative and qualitative differences among muscle types in terms of substrates utilization patterns. This study thus defined the pattern of substrates preferential utilization by mitochondria from glycolytic gastrocnemius (GAS) and oxidative soleus (SOL) skeletal muscles and from heart left ventrical (LV) in rats. We measured in situ, ADP (2 mM)-stimulated, mitochondrial respiration rates from skinned fibers in presence of increasing concentrations of pyruvate (Pyr) + malate (Mal), palmitoyl-carnitine (Palm-C) + Mal, glutamate (Glut) + Mal, glycerol-3-phosphate (G3-P), lactate (Lact) + Mal. Because the fibers oxygen uptake (Vs) followed Michaelis-Menten kinetics in function of substrates level we determined the Vs and Km, representing maximal oxidative capacity and the mitochondrial sensibility for each substrate, respectively. Vs were in the order GAS < SOL < LV for Pyr, Glu, and Palm-C substrates, whereas in the order SOL = LV < GAS with G3-P. Moreover, the relative capacity to oxidize Palm-C is extremely higher in LV than in SOL. Vs was not stimulated by the Lact substrate. The Km was equal for Pyr among muscles, but much lower for G3-P in GAS and lower for Palm-C in LV. These results demonstrate qualitative mitochondrial tissue specificity for metabolic pathways. Mitochondria of glycolytic muscle fibers are well adapted to play a central role for maintaining a satisfactory cytosolic redox state in these fibers, whereas mitochondria of LV developed important capacities to use fatty acids.  相似文献   

19.
We investigated age-related changes in antioxidant, glycolytic, beta-oxidation, and tricarboxylic acid cycle enzyme activity in the diaphragm and plantaris muscle of female Fischer 344 rats. Tissue samples from the costal and crural diaphragm and plantaris muscle were obtained from 30 animals in the following age groups: 1) 6 mo old (n = 10), 2) 26 mo old (n = 10), and 3) 30 mo old (n = 10). Aging had no effect (P greater than 0.05) on the activities of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HADH) in the costal or crural diaphragm. Similarly, no age-related differences existed (P greater than 0.05) in the crural diaphragm in lactate dehydrogenase (LDH) or glutathione peroxidase (GPX) activity. In contrast, the activities of LDH and GPX were significantly (P less than 0.05) higher in the costal diaphragm in the 30- than in the 6-mo old animals. In addition, the ratio of LDH to CS activity increased (P less than 0.05) as a function of age in the costal diaphragm. Conversely, the ratio of CS to GPX activity in the costal diaphragm was lower (P less than 0.05) in the 30- than in the 6-mo old animals. No significant (P greater than 0.05) age-related differences existed in LDH-to-CS or CS-to-GPX activity ratios in the crural diaphragm. Finally, aging resulted in a significant decrease (P less than 0.05) in the activities of LDH, CS, and HADH in the plantaris muscle. These data demonstrate that, unlike many hindlimb locomotor muscles, the oxidative capacity of the Fischer 344 rat diaphragm does not decrease in old age.  相似文献   

20.
We hypothesized that glycogenesis increases in muscle during exercise before significant glycogen depletion occurs. Therefore, rats ran for 15 or 90 min at speeds of 8-22 m/min. D-[5-3H]glucose (10 microCi/100 g body wt) was administered 10 min before the end of exercise. Hindlimb muscles [soleus (SOL), plantaris (PL), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] and a portion of liver were analyzed for glycogen concentrations and rates of glycogen synthesis (i.e., D-[3H]glucose incorporated into glycogen). At rest, marked differences were observed among muscles in their rates of glucose incorporation into glycogen: i.e., SOL = 24.3 +/- 3.1, RG = 5.4 +/- 1.9, PL = 2.8 +/- 1.1, EDL = 0.54 +/- 0.10, WG = 0.12 +/- 0.02 (SE) dpm.micrograms glycogen-1.10 min-1 (P less than 0.05 between respective muscles). Compared with the glucose incorporation into glycogen at rest, increments in the PL (272%), RG (189%), WG (400%), EDL (274%), and liver (175%) were observed after 90 min of exercise (P less than 0.05, all data). In contrast, a decrease in glucose incorporation into glycogen (-62%) occurred in the SOL at min 15 (P less than 0.05), but this returned to the rates observed at rest after 90 min of exercise. This measure for rates of net glycogen synthesis (dpm.microgram glycogen-1.10 min-1) was weakly related to the ambient glycogen levels in most muscles; the exception was the SOL (r = -0.79; P less than 0.05). There was up to a 50-fold difference in glycogen synthesis among muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号