首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Andean potato tuber moth, Symmetrischema tangolias (Gyen) [Lepidoptera, Gelechiidae], is an economically important pest of potato (Solanum tuberosum L.) in the mid‐elevated Andean region and an invasive pest of partially global importance. Determination of the pest's population life table parameters is essential for understanding population development and growth under a variety of climates and as part of a pest risk analysis. The development, mortality and reproduction were studied in two pest populations (from Peru and Ecuador) in which cohorts of each life stage were exposed to different constant temperatures ranging from 10°C to 28°C. Using the Insect Life Cycle Modeling software, nonlinear equations were fitted to the data and an overall phenology model established to simulate life table parameters based on temperature. The temperature‐dependent development curve was statistically well described for eggs by Ratkowsky's model and for larvae and pupae by Taylor's model. Variability in development time among individuals independent of temperature was significantly described by a log‐logistic model. Temperature effects on immature mortality were described using different nonlinear models. Optimal temperature for survival was between 14° and 17°C. Temperature effects on adult senescence and oviposition time were described by simple exponential models; within‐group variability was described by a Weibull distribution function. Fecundity per female due to temperature followed a nonlinear model indicating maximum reproduction at ~17°C. The established model revealed good convergence with historical life tables established at fluctuating temperatures. The results confirm that S. tangolias is more adapted to cooler temperature than the common potato tuber moth, Phthorimaea operculella (Zeller). S. tangolias develops at temperatures within the range of 8–28.8°C with a maximum finite rate of population increase (=1.053) at 21°C. The established process‐based physiological model can be used globally to simulate life table parameters for Stangolias based on temperature and should prove helpful for evaluating the potential establishment risk and in adjusting pest management programmes.  相似文献   

2.
3.
Both direct thermal and maternal photoperiodic effects on diapause induction have been thoroughly investigated in many insect species, while maternal thermal effects have been infrequently studied. We studied the effect of temperature during development of maternal generation on the proportion of diapausing progeny in four species of the genus Trichogramma Westw., minute egg parasitoids, widely used for biological control of lepidopteran pests. The maternal generations were reared at day lengths of 12 and 18 h and temperatures of 17, 20, 25 and 30°C, and their progeny developed under day length of 12 h and temperatures of 13 and 14°C. In T. evanescens and T. piceum, the proportion of diapausing progeny decreased with increasing temperature under all tested photoperiods and thermal regimes of progeny development; the high temperature of 30°C totally averted diapause of progeny. In T. buesi and T. principium, low temperatures of 17 and 20°C resulted in relatively high proportion of diapausing progeny only when the maternal generation developed under short‐day conditions. The threshold of the maternal thermal response varied from 17–18 to 22–23°C. Under field conditions, Trichogramma females are exposed to such high temperatures only during summer, when diapause in their progeny is in any case prevented by the maternal photoperiodic response and by the thermal response of the larvae. We conclude that the maternal thermal effect on diapause induction, although to a different extent, is inherent to Trichogramma species but, at least as suggested by laboratory experiments, it does not play any role in the regulation of seasonal development under natural conditions. However, during mass rearing of Trichogramma wasps, it should be taken into account that high temperature, even when combined with short photoperiod, can avert diapause in the next generation.  相似文献   

4.
Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host‐plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host‐plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full‐factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life‐history traits in the temperate‐zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host‐plant quality. The effects of host‐plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature‐mediated changes in host‐plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.  相似文献   

5.
In this study, we developed an oviposition model of Neoseiulus californicus (McGregor) with Tetranychus urticae Koch as prey. To obtain data for the model, we investigated the longevity, fecundity and survivorship of adult female N. californicus at six constant temperatures (16, 20, 24, 28, 32 and 36°C), 60–70% RH and a photoperiod of 16 : 8 (L : D) h. Longevity (average ± SE) decreased as temperature increased and was longest at 16°C (46.7 ± 5.25 days) and shortest at 36°C (12.8 ± 0.75 days). Adult developmental rate (1/average longevity) was described by the Lactin 1 model (r2 = 0.95). The oviposition period (average±SE) was also longest at 16°C (29.8 ± 2.93 days) and shortest at 36°C (6.7 ± 0.54 days). Fecundity (average±SE) was greatest at 24°C (43.8 ± 3.23 eggs) and lowest at 36°C (15.9 ± 1.50 eggs). The oviposition model comprised temperature‐dependent fecundity, age‐specific cumulative oviposition rate and age‐specific survival rate functions. The temperature‐dependent fecundity was best described by an exponential equation (r2 = 0.81). The age‐specific cumulative oviposition rate was best described by the three‐parameter Weibull function (r2 = 0.96). The age‐specific survival rate was best described by a reverse sigmoid function (r2 = 0.85).  相似文献   

6.
7.
The objective of this study was to determine the effectiveness of the spray‐drying process on the inactivation of Salmonella choleraesuis and Salmonella typhimurium spiked in liquid porcine plasma and to test the additive effect of immediate postdrying storage. Commercial spray‐dried porcine plasma was sterilized by irradiation and then reconstituted (1:9) with sterile water. Aliquots of reconstituted plasma were inoculated with either S. choleraesuis or S. typhimurium, subjected to spray‐drying at an inlet temperature of 200°C and an outlet temperature of either 71 or 80°C, and each spray‐drying temperature combinations were subjected to either 0, 30 or 60 s of residence time (RT) as a simulation of residence time typical of commercial dryers. Spray‐dried samples were stored at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days. Bacterial counts of each Salmonella spp., were completed for all samples. For both Salmonella spp., spray‐drying at both outlet temperatures reduced bacterial counts about 3 logs at RT 0 s, while there was about a 5·5 log reduction at RT 60 s. Storage of all dried samples at either 4·0 ± 3·0°C or 23·0 ± 0·3°C for 15 days eliminate all detectable bacterial counts of both Salmonella spp.

Significance and Impact of the Study

Safety of raw materials from animal origin like spray‐dried porcine plasma (SDPP) may be a concern for the swine industry. Spray‐drying process and postdrying storage are good inactivation steps to reduce the bacterial load of Salmonella choleraesuis and Salmonella typhimurium. For both Salmonella spp., spray‐drying at 71°C or 80°C outlet temperatures reduced bacterial counts about 3 log at residence time (RT) 0 s, while there was about a 5.5 log reduction at RT 60 s. Storage of all dried samples at either 4.0 ± 3.0°C or 23.0 ± 0.3°C for 15 days was effective for eliminating detectable bacterial counts of both Salmonella spp.  相似文献   

8.
Doryctobracon brasiliensis (Szépligeti) is a parasitoid larval–pupal of fruit flies and has great potential to be used in biological control programmes as it feeds on other Anastrepha species in addition to Anastrepha fraterculus (Wiedemann). This study investigated the biology of D. brasiliensis at different temperatures to design a life fertility table and determine thermal requirements. The parasitoids were multiplied in larvae of A. fraterculus in air‐conditioned chambers at 15, 18, 20, 22, 25, 28 and 30°C, 70 ± 20% RH and photophase of 12 h. We determined the number of offspring, sex ratio, longevity of males and females and duration of egg–adult period. The temperature range 18–22°C ensures higher fecundity and at 20°C, and the average number of offspring per female was 152.77 parasitoids. The sex ratio of offspring produced was reduced with increasing temperatures. Longevity of males and females of D. brasiliensis was reduced by increasing temperatures. At 15, 28 and 30°C, there was no development of immature stages. For the temperature range 18–25°C, the duration of egg–adult period of D. brasiliensis was inversely proportional to temperature. At 20 and 22°C, we observed the highest values of net reproduction rate (Ro) and finite reason of increase (λ), meaning that at the estimated optimum temperature (21°C), the population of D. brasiliensis increased 47 times each generation. The lower temperature threshold for development was 10.01°C and the thermal constant (K) 303.21 degree/days. This information confirms that D. brasiliensis is better suited to temperate environments, which implies a significant potential for the use of D. brasiliensis in the control of A. fraterculus, because most areas occupied by this pest are in temperate regions. In addition, D. brasiliensis is useful in mass rearing systems in laboratory.  相似文献   

9.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

10.
Genotype‐by‐genotype interactions demonstrate the existence of variation upon which selection acts in host–parasite systems at respective resistance and infection loci. These interactions can potentially be modified by environmental factors, which would entail that different genotypes are selected under different environmental conditions. In the current study, we checked for a G × G × E interaction in the context of average temperature and the genotypes of asexual lines of the endoparasitoid wasp Lysiphlebus fabarum and isolates of Hamiltonella defensa, a protective secondary endosymbiont of the wasp's host, the black bean aphid Aphis fabae. We exposed genetically identical aphids harbouring different isolates of H. defensa to three asexual lines of the parasitoid and measured parasitism success under three different temperatures (15, 22 and 29 °C). Although there was clear evidence for increased susceptibility to parasitoids at the highest average temperature and a strong G × G interaction between the host's symbionts and the parasitoids, no modifying effect of temperature, that is, no significant G × G × E interaction, was detected. This robustness of the observed specificity suggests that the relative fitness of different parasitoid genotypes on hosts protected by particular symbionts remains uncomplicated by spatial or temporal variation in temperature, which should facilitate biological control strategies.  相似文献   

11.
Temperature‐dependent development, parasitism and longevity of the braconid parasitoids, Fopius arisanus Sonan and Diachasmimorpha longicaudata Ashmed on Bactorcera invadens Drew Tsuruta & White, was evaluated across five constant temperatures (15, 20, 25, 30 and 35°C). Developmental rate decreased linearly with increasing temperature for both the parasitoid species. Linear and Brière‐2 nonlinear models were used to determine the lower temperature threshold at which the developmental rate (1/D) approached zero. For F. arisanus, lower thresholds to complete development estimated with the linear and nonlinear models were 10.1 and 6.9°C, respectively. The total degree‐days (DD) required to complete the development estimated by the linear model for F. arisanus was 360. In D. longicaudata, the linear and nonlinear models estimated lower thresholds of 10.4 and 7.3°C, respectively, and the total DD estimated was 282. In F. arisanus, percentage parasitism differed significantly across all temperatures tested and was highest at 25°C (71.1 ± 2.5) and lowest at 15°C (46.4 ± 1.4). Parasitoid progeny sex ratio was female biased at all temperatures except at 20°C. In D. longicaudata, percentage parasitism was highest at 20°C (52.2 ± 4.0) and lowest at 15°C (27.7 ± 2.5). Parasitoid progeny sex ratio was female biased and similar for all temperatures. Adult longevity of both parasitoids was shortest at 35°C and longest at 15°C, and females lived significantly longer than males at all temperatures tested. Our findings provide some guidance for future mass rearing and field releases of the two parasitoids for the management of B. invadens in Africa.  相似文献   

12.
The temperature‐dependent development of the European larch bark beetle, Ips cembrae, was studied under long‐day conditions L:D 16:8 at three temperature regimes, 15°C, 20°C and 25°C, using the sandwich plate method. By observing the individual developmental progress, we calculated the developmental times and lower developmental thresholds of one entire generation and various ontogenetic stages. The mean developmental time of one generation was about 120, 64 and 37 days at 15°C, 20°C and 25°C, respectively. The egg stage comprised about 9% of the total development or about 16% of the pre‐imaginal development. The larval stages took about 39% of the entire and about 66% of the pre‐imaginal development. The pupal stage needed about 11% of the total or about 18% of the pre‐imaginal development. The lower developmental threshold for one generation was 11.2°C. The egg stage had the highest lower developmental threshold of 12.0°C, the pupa the lowest of 9.8°C and the total larval stages showed a value of 11.2°C. The thermal requirements for I. cembrae have never been studied in detail before. The results will be a valuable contribution for monitoring and risk assessment models to estimate the beetle's phenology and its potential impacts on forest ecosystems under changing climate conditions.  相似文献   

13.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

14.
The box‐tree moth Cydalima perspectalis (Walker) is an invasive pest causing severe damage to box trees (Buxus spp.). It is native to Japan, Korea and China, but established populations have been recorded in a number of locations across Europe since 2007 and the spread of the insect continues. The developmental investigations suggest that larvae overwinter mainly in their 3rd instar in Europe and that diapause is induced by a day length of about 13.5 h. One and a half to 2 months in the cold are necessary to terminate diapause. Threshold temperatures for development and number of degree‐days to complete a generation are slightly different from those calculated in previous studies in Japan. A bioclimatic (CLIMEX®) model for C. perspectalis in Europe was developed, based on climate, ecological and developmental parameters from the literature and new field and laboratory studies on diapause termination, thermal requirements and phenology. The model was then validated with actual distribution records and phenology data. The current distribution and life history of C. perspectalis in Europe were consistent with the predicted distribution. The climate model suggests that C. perspectalis is likely to continue its spread across Europe, except for Northern Fenno‐Scandinavia, Northern Scotland and high mountain regions. The northern distribution of C. perspectalis is expected to be limited by a number of degree‐days above the temperature threshold insufficient to complete a generation, whereas its southern range is limited by the absence of a cold period necessary to resume diapause. The model predicts relatively high Ecoclimatic Indices throughout most of Europe, suggesting that the insect has the potential of becoming a pest in most of its predicted range. However, damage is likely to be higher in Southern and Central Europe where the moth is able to complete at least two generations per year.  相似文献   

15.
In a recent study of the hemlock looper (HL), Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae), long exposure of early‐diapausing eggs to high temperatures considerably reduced their ability to hatch. This finding raised the possibility that adults could also be negatively affected by increasing temperatures if they reproduced too early in the season in response to global warming. To investigate this hypothesis, newly formed HL pupae from three populations of eastern Canada ‐ Quebec (QC), Newfoundland (NL), and Labrador (LB) ‐ were submitted to four constant temperatures (10, 15, 20, or 25 °C) during pupal and adult development. The effect of population origin on HL reproduction was generally negligible. Mating probability was high at 15 and 20 °C (0.86 and 0.83, respectively), quite low at 10 °C (0.53), and even lower at 25 °C (0.38). Mating started earlier in the night and lasted longer as temperature decreased. Both productivity and absolute fecundity increased when temperature increased from 10 to 15 °C and then decreased slowly as temperature increased further. Over populations and temperatures, relative fecundity averaged 0.95, indicating that females had enough time to lay most of their eggs before they died. High temperatures had a deleterious effect on egg fertility: between 10 and 20 °C, relative fertility was about 0.90, but it dropped to 0.51 at 25 °C. The average proportion of fertile eggs declined from 0.88 in the first quarter of the egg‐laying period to 0.57 in the last quarter, suggesting lower sperm count or viability, or deterioration of the oocytes as the egg‐laying period progresses. Based on these findings, we argue that the production of an additional fifth instar among HL populations of southern origin can be viewed as an adaptive mechanism allowing adults to postpone reproduction or the egg‐laying period in order to mitigate the detrimental effect of high temperatures on their probability of mating successfully or that of laying fertile eggs.  相似文献   

16.
We evaluated the effectiveness of 2‐phenylethanol (PET) in combination with acetic acid (AA) as a binary lure for monitoring male and female obliquebanded leafroller, Choristoneura rosaceana (Harris). Studies were conducted in apple, Malus domestica Borkhausen, orchards treated with or without sex pheromone dispensers for mating disruption (MD). Open polypropylene vials, closed membrane cups, and rubber septa loaded with AA and/or PET in varying amounts were first evaluated in a series of trapping experiments. Membrane cups loaded with 800 mg of PET were as effective as 10‐mg septa, but longer lasting, and were comparable to the open vials. A membrane cup AA lure was effective in tests, but further work is needed to increase its release rate and extend its activity. Catches of codling moth, Cydia pomonella (L.), and C. rosaceana were unaffected by combining PET with (E,E)‐8,10‐dodecadien‐1‐ol, the sex pheromone of codling moth, pear ester, (E,Z)‐2,4‐ethyl‐decadienoate and AA lures. Adding (E)‐4,8‐dimethyl‐1,3,7‐nonatriene to this blend to enhance codling moth catch significantly reduced catches of C. rosaceana. PET + AA was a more attractive binary lure than AA plus phenylacetonitrile (PAN) for C. rosaceana. The addition of PET or PAN to traps already baited with the sex pheromone of C. rosaceana significantly reduced male catches. Traps baited with PET + AA placed in blocks not treated with MD caught significantly fewer C. rosaceana than traps baited with sex pheromone. In comparison, sex pheromone‐baited traps in MD blocks caught ≤1 male moth per season which was significantly lower than total moth (>10) or female moth (≥3) catch in these blocks with PET + AA. A high proportion (>70%) of trapped females were mated in both untreated and MD‐treated orchards. Further refinement of this binary, bisexual lure using membrane cup technology may allow the establishment of action thresholds and improve management timings for C. rosaceana.  相似文献   

17.
Climate change is altering phenology; however, the magnitude of this change varies among taxa. Compared with phenological mismatch between plants and herbivores, synchronization due to climate has been less explored, despite its potential implications for trophic interactions. The earlier budburst induced by defoliation is a phenological strategy for plants against herbivores. Here, we tested whether warming can counteract defoliation‐induced mismatch by increasing herbivore‐plant phenological synchrony. We compared the larval phenology of spruce budworm and budburst in balsam fir, black spruce, and white spruce saplings subjected to defoliation in a controlled environment at temperatures of 12, 17, and 22°C. Budburst in defoliated saplings occurred 6–24 days earlier than in the controls, thus mismatching needle development from larval feeding. This mismatch decreased to only 3–7 days, however, when temperatures warmed by 5 and 10°C, leading to a resynchronization of the host with spruce budworm larvae. The increasing synchrony under warming counteracts the defoliation‐induced mismatch, disrupting trophic interactions and energy flow between forest ecosystem and insect populations. Our results suggest that the predicted warming may improve food quality and provide better growth conditions for larval development, thus promoting longer or more intense insect outbreaks in the future.  相似文献   

18.
Life‐history traits from four geographical populations (tropical Ledong population [LD], subtropical Guangzhou [GZ] and Yongxiu populations, and temperate Langfang population [LF]) of the Asian corn borer, Ostrinia furnacalis were investigated at a wide range of temperatures (20–32°C). The larval and pupal times were significantly decreased with increasing rearing temperature, and growth rate was positively correlated with temperature. The relationship between body weight and rearing temperature in O. furnacalis did not follow the temperature–size rule (TSR); all populations exhibited the highest pupal and adult weights at high temperatures or intermediate temperatures. However, development time, growth rate, and body weight did not show a constant latitudinal gradient. Across all populations at each temperature, female were significantly bigger than males, showing a female‐biased sexual size dimorphism (SSD). Contrary to Rensch's rule, the SSD tended to increase with rising temperature. The subtropical GZ population exhibited the largest degree of dimorphism while the temperate LF exhibited the smallest. Male pupae lose significantly more weight at metamorphosis compared to females. The proportionate weight losses of different populations were significantly different. Adult longevity was significantly decreased with increasing temperature. Between sexes, all populations exhibit a rather female‐biased adult longevity. Finally, we discuss the adaptive significance of higher temperature‐inducing high body weight in the moth's life history and why the moth exhibits the reverse TSR.  相似文献   

19.
Drought‐induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional‐scale forest die‐off influences terrestrial albedo, carbon and water budgets, and land‐surface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with “global‐change‐type drought”, corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil–plant–atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperature alone, with or without the imposition of a 3‐month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2‐year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change‐type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature.  相似文献   

20.
Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10‐day period and assessed whether and why patterns may vary among species. We found large leaf‐to‐air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf‐to‐air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade‐off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号