首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
Summary In the urinary bladder of the toadBufo marinus triiodothyronine selectively inhibits the late effect of aldosterone on Na+ transport. We have investigated whether T3 might mediate its antimineralocorticoid action by controlling: i) the level of aldosterone binding sites in the soluble (cytosolic) pool isolated from tissues treated with T3 (60nm) for up to 20 hr of incubation; ii) the kinetics of uptake of3H-aldosterone into cytoplasmic and nuclear fractions after 2 or 20 hr of exposure to T3. The number and the affinity of Type I (high affinity, low capacity) and Type II (low affinity, high capacity) cytosolic binding sites (measured at 0°C) did not vary significantly after 18 hr of exposure to T3, while aldosterone-dependent Na+ transport was significantly inhibited. In addition, T3 did not modify the kinetics of uptake (90 min) of3H-aldosterone into cytoplasmic and nuclear fractions of toad bladder incubatedin vitro at 25°C. By contrast, aldosterone itself was able to down-regulate its cytosolic and nuclear binding sites after an 18-hr exposure to the steroid hormone (10 or 80nm). T3 slightly (20%) but significantly potentiated the down regulation of nuclear binding sites. In conclusion, T3 does not appear to have major effects on the regulation of the aldosterone receptor, which could explain in a simple manner its antimineralocorticoid action.  相似文献   

2.
Summary In the urinary bladder of the toadBufo marinus, the basal rate of synthesis of a number of proteins was modulated in a bidirectional way (i.e., induced or repressed) by aldosterone and by triiodothyronine (T3). Each hormone was therefore characterized by a distinct domain of response. When both hormones were added simultaneously, the two domains consistently overlapped at least for one protein, termed AIP-1, or aldosterone-induced protein 1 (M r65 kilodaltons,p i=6.7, as analyzed by two-dimension gel electrophoresis). The physiological role of AIP-1 is unknown, but could be related to the late mineralocorticoid response. In five experiments, T3 (60nm, 18-hr incubation) consistently repressed AIP-1, while aldosterone-dependent sodium transport (late response) was significantly inhibited, as previously described. The repression of AIP-1 was also observed as early as 6 hr after aldosterone addition. In addition, sodium butyrate (3mm), which was previously shown to also selectively inhibit the late mineralocorticoid response, was also able to repress AIP-1. Our results suggest that AIP-1, is one of the proteins involved in the mediation of the late mineralocorticoid response.  相似文献   

3.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

4.
5.
The effect of l-arginine on transepithelial ion transport was examined in cultured M-1 mouse renal cortical collecting duct (CCD) cells using continuous short circuit current (I SC ) measurements in HCO3 /CO2 buffered solution. Steady state I SC averaged 73.8 ± 3.2 μA/cm2 (n= 126) and was reduced by 94 ± 0.6% (n= 16) by the apical addition of 100 μm amiloride. This confirms that the predominant electrogenic ion transport in M-1 cells is Na+ absorption via the epithelial sodium channel (ENaC). Experiments using the cationic amino acid l-lysine (radiolabeled) as a stable arginine analogue show that the combined activity of an apical system y+ and a basal amino acid transport system y+L are responsible for most cationic amino acid transport across M-1 cells. Together they generate net absorptive cationic amino acid flux. Application of l-arginine (10 mm) either apically or basolaterally induced a transient peak increase in I SC averaging 36.6 ± 5.4 μA/cm2 (n= 19) and 32.0 ± 7.2 μA/cm2 (n= 8), respectively. The response was preserved in the absence of bath Cl (n= 4), but was abolished either in the absence of apical Na+ (n= 4) or by apical addition of 100 μm amiloride (n= 6). l-lysine, which cannot serve as a precursor of NO, caused a response similar to that of l-arginine (n= 4); neither L-NMMA (100 μm; n= 3) nor L-NAME (1 mm; n= 4) (both NO-synthase inhibitors) affected the I SC response to l-arginine. The effects of arginine or lysine were replicated by alkalinization that mimicked the transient alkalinization of the bath solution upon addition of these amino acids. We conclude that in M-1 cells l-arginine stimulates Na+ absorption via a pH-dependent, but NO-independent mechanism. The observed net cationic amino acid absorption will counteract passive cationic amino acid leak into the CCD in the presence of electrogenic Na+ transport, consistent with reports of stimulated expression of Na+ and cationic amino acid transporters by aldosterone. Received: 11 September 2000/Revised: 6 December 2000  相似文献   

6.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

7.
Summary Exposure of thein vitro rabbit corneal epithelium to Ag+ by the addition of AgNO3 (10–7–10–5)m) to the apical surface or by the use of imperfectly chlorided Ag/AgCl half-cells in Ussing-style membrane chambers, greatly increases short-circuit current and transepithelial potential. The early phase (the first 30 min) of the short-circuit current stimulation by Ag+ is linearly dependent on tear-side sodium concentration, is largely a result of a tenfold increase in net Na+ uptake and is incompletely inhibited by ouabain, suggesting that Ag+ increases cation (primarily Na+) conductance of the apical membrane. This mechanism for the Ag+ effect is supported by microelectrode experiments, wherein Ag+ depolarizes specifically the apical barrier potential and increases apical barrier conductance. A later phase in the effect (0.5–3 hr) is characterized by a gradual increase in36Cl and14C-mannitol unidirectional fluxes, by a decline in epithelial resting potential and short-circuit current, by complete ouabain inhibition and by fit to saturation kinetics with respect to Na+ concentration in the bathing media. This pahse of the effect apparently reflects a nonselective opening of the paracellular pathway in the epithelium and is rate-limited by Na+ pump activity at the basolateral membrane. Both phases are associated with swelling of the corneal stroma and may be rapidly reversed using thiol agents (reduced glutathione and dithiothreitol). The results suggest that Ag+ may be useful in the study of cation transport by epithelia and the work provides basic physiological information that is pertinent to the prophylactic use of AgNO3 in clinical ophthalmology.  相似文献   

8.
In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.  相似文献   

9.
CACO-2 BBE was used to determine the response of a gastrointestinal epithelium to tumor necrosis factor-α (TNF). Incubation of CACO-2 BBE with TNF did not produce any effect on transepithelial resistance (TER) within the first 6 hr but resulted in a 40–50% reduction in TER and a 30% decrease in I sc (short circuit current) relative to time-matched control at 24 hr. The decrease in TER was sustained up to 1 week following treatment with TNF and was not associated with a significant increase in the transepithelial flux of [14C]-d-mannitol or the penetration of ruthenium red into the lateral intercellular space. Dilution potential and transepithelial 22Na+ flux studies demonstrated that TNF-treatment of CACO-2 BBE cell sheets increased the paracellular permeability of the epithelium to Na+ and Cl. The increased transepithelial permeability did not associate with an increase in the incidence of apoptosis. However, there was a TNF-dependent increase in [3H]-thymidine labeling that was not accompanied by a change in DNA content of the cell sheet. The increase in transepithelial permeability was concluded to be across the tight junction because: (i) 1 mm apical amiloride reduced the basolateral to apical flux of 22Na+, and (ii) dilution potential studies revealed a bidirectionally increased permeability to both Na+ and Cl. These data suggest that the increase in transepithelial permeability across TNF-treated CACO-2 BBE cell sheets arises from an alteration in the charge selectivity of the paracellular conductive pathway that is not accompanied by a change in its size selectivity. Received: 4 March 1997/Revised: 3 November 1997  相似文献   

10.
Summary Usin gintracellular microelectrode technique, the response of the voltageV across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO 3 ] o (depolarization upon lowering and hyperpolarization upon raising [HCO 3 ] o ) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+] o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10–3 m) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+] o =151mm and [HCO 3 ] o =46mm, the transients ofV depended, with 39.0±9.0 (sd) mV/decade, on bicarbonate and, with 15.3±5.8 (sd) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response ofV was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10–3 m) caused a reversible hyperpolarization of the steady-state potential by 8.5±2.6 mV (sd). It did not affect the immediate response to changes in [Na+] o or [HCO 3 ] o , but reduced the speed of regaining the steady-state potential after a change in [HCO 3 ] o . (8) Ouabain (10–4 m) caused a fast depolarization of –6.8±1.1 (sd) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10–5 m. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charage with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.  相似文献   

11.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

12.
 Electrogenic cation transport across the caecal epithelium of the leech Hirudo medicinalis was investigated using modified Ussing chambers. Transepithelial resistance (R T ) and potential difference (V T ) were 61.0±3.5 Ω ⋅ cm2 and −1.1±0.2 mV (n=149), respectively, indicating that leech caecal epithelium is a “leaky” epithelium. Under control conditions short circuit current (I SC ) and transepithelial Na+ transport rate (I Na ) averaged at 22.1±1.5 μA ⋅ cm-2 and 49.7±2.6 μA ⋅ cm-2, respectively. Mucosal application of amiloride (100 μmol ⋅ l-1) or benzamil (50 μmol ⋅ l-1) influenced neither I SC nor I Na . The transport system in the apical membrane showed no pronounced cation selectivity and a linear dependence on mucosal Na+ concentration. Removal of mucosal Ca2+ increased I SC by about 50% due to an increase of transepithelial Na+ transport. Trivalent cations (La3+ and Tb3+, 1 mmol ⋅ l-1 both) added to the mucosal Ringer solution reduced I Na by more than 40%. Serosal ouabain (1 mmol ⋅ l-1) almost halved I SC and I Na while 0.1% (=5.4 mmol ⋅ l-1) DNP decreased I Na to 11.8±5.1% of initial values. Serosal addition of cAMP increased both I SC and I Na whereas the neurotransmitters FMRFamide, acetylcholine, GABA, L-dopa, serotonin and dopamine failed to show any effects; octopamine, glycine and L-glutamate reduced I Na markedly. On the basis of these results we conclude that in leech caecal epithelium apical uptake of monovalent cations is mediated by non-selective cation conductances which are sensitive to extracellular Ca2+ but insensitive to amiloride. Basolaterally Na+ is extruded via ouabain-sensitive and -insensitive ATPases. cAMP activates Na+ transport across leech caecal epithelium, although the physiological stimulus for cAMP-production remains unknown. Accepted: 20 May 1996  相似文献   

13.
Summary Addition of the polyene antibiotic filipin (50 m) to the outside bathing solution (OBS) of the isolated frog skin resulted in a highly significant active outward transport of K+ because filipinper se increases the nonspecific Na+ and K+ permeability of the outward facing membrane. The K+ transport was calculated from the chemically determined changes in K+ concentrations in the solution bathing the two sides of the skin. The active transepithelial K+ transport required the presence of Na+ in the OBS, but not in the inside bathing solution (IBS), and it was inhibited by the Na+, K+-ATPase inhibitor ouabain. The addition of Ba++ to the IBS in the presence of filipin in the OBS resulted in an activation of the transepithelial K+ transport and in an inhibition of the active Na+ transport. This is in agreement with the notion that Ba++ decreases the passive K+ permeability of the inward facing membrane. In the presence of amiloride (which blocks the specific Na permeability of the outward facing membrane) and Ba++ there was a good correlation between the active Na+ and K+ transport. It is concluded that the active transepithelial K+ transport is carried out by a coupled electrogenic Na–K pump, and it is suggested that the pump ratio (Na/K) is 1.5.  相似文献   

14.
15.
The ability to actively transport nutrients is maintained in intestinal tissues of hibernating ground squirrels compared with their active counterparts, and shows apparent upregulation in hibernators when transport rates are normalized to tissue mass. To identify the mechanisms responsible for the preservation of transport function during the extended fast of hibernation, we studiedd-glucose uptake into jejunal brush border membrane vesicles prepared from active and hibernating 13-lined ground squirrels. Hibernators were without food and showing regular bouts of torpor for at least 6 weeks before sacrifice. Electron micrographs indicated similar microvillus heights of jejunal enterocytes in the two activity states, whereas microvillus density was slightly greater in the hibernators. Glucose uptake into brush border membrane vesicles was inversely related to medium osmolarity, indicating negligible binding of substrate to brush border membrane vesicles surfaces, and intravesicular spaces were similar in hibernating and active squirrels. Glucose uptake showed strong Na+ dependency in both groups, with equivalent overshoot values in the presence of Na+. Kinetic analysis revealed a significant increase in the maximal velocity of transport (J max) in hibernators (55.9±5.6 nmol·min-1·mg-1) compared with active squirrels (36.7±5.1 nmol·min-1·mg-1,P<0.05), with no change inK m. Thus, the structure and absorptive capacity of the intestinal brush border persists in fasted hibernators, and the increase inJ max for glucose uptake during hibernation likely contributes to the enhanced Na+-dependent glucose absorption previously observed at the tissue level.Abbreviations BBM brush border membrane(s) - BBMV brush border membranes vesicles - SGLT1 Na+-glucose transporter - 3-OMG 3-orthomethylglucose - J max maximal velocity of transport - K m transporter affinity for substrate - T b body temperature  相似文献   

16.
This study investigates the reverse mode of the Na+/glucose cotransporter (SGLT1). In giant excised inside-out membrane patches from Xenopus laevis oocytes expressing rabbit SGLT1, application of α-methyl-D-glucopyranoside (αMDG) to the cytoplasmic solution induced an outward current from cytosolic to external membrane surface. The outward current was Na+- and sugar-dependent, and was blocked by phlorizin, a specific inhibitor of SGLT1. The current-voltage relationship saturated at positive membrane voltages (30–50 mV), and approached zero at −150 mV. The half-maximal concentration for αMDG-evoked outward current (K0.5αMDG) was 35 mM (at 0 mV). In comparison, K0.5αMDG for forward sugar transport was 0.15 mM (at 0 mV). K0.5Na was similar for forward and reverse transport (≈35 mM at 0 mV). Specificity of SGLT1 for reverse transport was: αMDG (1.0) > D-galactose (0.84) > 3-O-methyl-glucose (0.55) > D-glucose (0.38), whereas for forward transport, specificity was: αMDG ≈ D-glucose ≈ D-galactose > 3-O-methyl-glucose. Thus there is an asymmetry in sugar kinetics and specificity between forward and reverse modes. Computer simulations showed that a 6-state kinetic model for SGLT1 can account for Na+/sugar cotransport and its voltage dependence in both the forward and reverse modes at saturating sodium concentrations. Our data indicate that under physiological conditions, the transporter is poised to accumulate sugar efficiently in the enterocyte.  相似文献   

17.
Summary Brush border membrane vesicles (BBMV) were prepared from the gills of the marine mussel,Mytilus edulis. These membranes contained two distinct pathways for cotransport of Na+ and -neutral amino acids. The major pathway in mussel gill BBMV was the alanine-lysine (AK) pathway, which had a high affinity for alanine and for the cationic amino acid, lysine. The AK pathway was inhibited by nonpolar -neutral amino acids and cationic amino acids, but was not affected by -neutral amino acids or imino acids. The kinetics of lysine transport were consistent with a single saturable process, with aJ max of 550 pmol/mg-min and aK t of 5 m. The AK pathway did not have a strict requirement for Na+, and concentrative transport of lysine was seen in the presence of inwardly directed gradients of Li+ and K+, as well as Na+. Harmaline inhibited the transport of lysine in solutions containing either Na+ or K+. The alanine-proline (AP) pathway transported both alanine and proline in mussel gill BBMV. The AP pathway was strongly inhibited by nonpolar -neutral amino acids, proline, and -(methylamino)isobutyric acid (Me-AIB). The kinetics of proline transport were described by a single saturable process, with aJ max of 180 pmol/mg-min andK t of 4 m. In contrast to the AK pathway, the AP pathway appeared to have a strict requirement for Na+. Na+-activation experiments with lysine and proline revealed sigmoid kinetics, indicating that multiple Na+ ions are involved in the transport of these substrates. The transport of both lysine and proline was affected by membrane potential in a manner consistent with electrogenic transport.  相似文献   

18.
Na+/K+-ATPase plays a key role in the transport of Na+ throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na+ and K+ ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na+/K+-ATPase activity and K+ conductance were evaluated using electrophysiological methods. Na+K+-ATPase α1– and β1-subunit expression was quantified by Western blot techniques. Na+/H+ exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na+ transport, which results from an increase in the number of Na+/K+-ATPase α1- and β1-subunits, in the membrane. Increases in Na+/K+-ATPase activity were accompanied by increases in K+ conductance as a result of functional coupling between Na+/K+-ATPase and basolateral K+ channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na+/H+ exchanger activity were observed. H2O2 production was increased in aged cells, but exposure for 5 days to 1 and 10 μM of H2O2 had no effect on Na+/K+-ATPase expression. Ouabain (100 nM) increased α1-subunit, but not β1-subunit, Na+/K+-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.  相似文献   

19.
Summary Near-instantaneous current-voltage relationships and shot-noise analysis of amiloride-induced current fluctuations were used to estimate apical membrane permeability to Na (P Na), intraepithelial Na activity (Na c ), single-channel Na currents (i) and the number of open (conducting) apical Na channels (N0), in the urinary bladder of the toad (Bufo marinus). To facilitate voltageclamping of the apical membrane, the serosal plasma membranes were depolarized by substitution of a high KCl (85mm) sucrose (50mm) medium for the conventional Na-Ringer's solution on the serosal side.Aldosterone (5×10–7 m, serosal side only) elicited proportionate increases in the Na-specific current (I Na and inP Na, with no significant change in the dependence ofP Na on mucosal Na (Na o ).P Na and the control ofP Na by aldosterone were substrate-dependent: In substrate-depleted bladders, pretreatment with aldosterone markedly augmented the response to pyruvate (7.5×10–3 m) which evoked coordinate and equivalent increases inI Na andP Na.The aldosterone-dependent increase inP Na was a result of an equivalent increase in the area density of conducting apical Na channels. The computed single-channel current did not change. We propose that, following aldosterone-induced protein synthesis, there is a reversible metabolically-dependent recruitment of preexisting Na channels from a reservoir of electrically undetectable channels. The results do not exclude the possibility of a complementary induction of Na-channel synthesis.  相似文献   

20.
Summary We have examined transport and membrane binding of 6-diazo-5-oxo-l-norleucine (DON, a photoactive diazo-analogue of glutamine) and their relationships to glutamine transport in Xenopus laevis oocytes. DON uptake was stereospecific and saturable (V max of 0.44 pmol/oocyte · min and a K m of 0.065 mm). DON uptake was largely Nau+ dependent (80% at 50 m DON) and inhibited (>75%) by glutamine and arginine (substrates of the System B0,+ transporter) at 1 mm. Glutamine and DON show mutual competitive inhibition of Na+-dependent transport. Preincubation of oocytes in medium containing 0.1 mm DON for 24 or 48 hr depressed the V max for System B0,+ transport (as measured by Na+-dependent glutamine uptake), this effect was highly specific (neither d-DON nor the System B0,+ substrates glutamine and d-alanine showed any independent effect) and required Na+ ions. Glutamine (1 mm in preincubation medium) protected transport from inhibition by DON. The possibility that specific inactivation of System B0,+ by DON reflects attachment of DON to the transporter was tested by examining the binding of [14C]DON to Xenopus oocyte membranes. Oocytes incubated in 100 mm NaCl in the presence of [14C]DON for up to 48 hr showed 2.4-fold higher 14C-binding to membranes than oocytes incubated in choline chloride. Na+-dependent DON binding (31 ± 11 fmol/g membrane protein) was suppressed by external glutamine, arginine or alanine and was largely confined to a membrane protein fraction of 48–65 kDa (as assessed by SDS-polyacrylamide gel electrophoresis). The present studies indicate that DON and glutamine uptake in oocytes are both mediated by System B0,+ and demonstrate that DON binding to a particular membrane protein fraction is associated with inactivation of the transporter, offering the prospect of using [14C]DON as a covalent label for the transport protein in order to facilitate its isolation and subsequent biochemical characterization.This work was supported by The Wellcome Trust, Action Research for the Crippled Child, Ajinomoto GmbH, Pfrimmer GmbH, the Rank Prize Funds, the Medical Research Council and the University of Dundee. We are grateful to Dr. C.I. Pogson (Wellcome Research Laboratories) and Drs. J.C. Ellory and B. Elford (University of Oxford) for gifts of [14C]DON.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号