首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

2.
3.
Homologous recombination (HR) is essential for genome integrity. Recombination proteins participate in tolerating DNA lesions that interfere with DNA replication, but can also generate toxic recombination intermediates and genetic instability when they are not properly regulated. Here, we have studied the role of the recombination proteins Rad51 and Rad52 at replication forks and replicative DNA lesions. We show that Rad52 loads Rad51 onto unperturbed replication forks, where they facilitate replication of alkylated DNA by non‐repair functions. The recruitment of Rad52 and Rad51 to chromatin during DNA replication is a prerequisite for the repair of the non‐DSB DNA lesions, presumably single‐stranded DNA gaps, which are generated during the replication of alkylated DNA. We also show that the repair of these lesions requires CDK1 and is not coupled to the fork but rather restricted to G2/M by the replicative checkpoint. We propose a new scenario for HR where Rad52 and Rad51 are recruited to the fork to promote DNA damage tolerance by distinct and cell cycle‐regulated replicative and repair functions.  相似文献   

4.
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.  相似文献   

5.
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.  相似文献   

6.
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).  相似文献   

7.
In response to DNA damage and replication pausing, eukaryotes activate checkpoint pathways that prevent genomic instability by coordinating cell cycle progression with DNA repair. The intra-S-phase checkpoint has been proposed to protect stalled replication forks from pathological rearrangements that could result from unscheduled recombination. On the other hand, recombination may be needed to cope with either stalled forks or double-strand breaks resulting from hydroxyurea treatment. We have exploited fission yeast to elucidate the relationship between replication fork stalling, loading of replication and recombination proteins onto DNA, and the intra-S checkpoint. Here, we show that a functional recombination machinery is not essential for recovery from replication fork arrest and instead can lead to nonfunctional fork structures. We find that Rad22-containing foci are rare in S-phase cells, but peak in G2 phase cells after a perturbed S phase. Importantly, we find that the intra-S checkpoint is necessary to avoid aberrant strand-exchange events during a hydroxyurea block.  相似文献   

8.
Claspin promotes normal replication fork rates in human cells   总被引:1,自引:0,他引:1       下载免费PDF全文
The S phase-specific adaptor protein Claspin mediates the checkpoint response to replication stress by facilitating phosphorylation of Chk1 by ataxia-telangiectasia and Rad3-related (ATR). Evidence suggests that these components of the ATR pathway also play a critical role during physiological S phase. Chk1 is required for high rates of global replication fork progression, and Claspin interacts with the replication machinery and might therefore monitor normal DNA replication. Here, we have used DNA fiber labeling to investigate, for the first time, whether human Claspin is required for high rates of replication fork progression during normal S phase. We report that Claspin-depleted HeLa and HCT116 cells display levels of replication fork slowing similar to those observed in Chk1-depleted cells. This was also true in primary human 1BR3 fibroblasts, albeit to a lesser extent, suggesting that Claspin is a universal requirement for high replication fork rates in human cells. Interestingly, Claspin-depleted cells retained significant levels of Chk1 phosphorylation at both Ser317 and Ser345, raising the possibility that Claspin function during normal fork progression may extend beyond facilitating phosphorylation of either individual residue. Consistent with this possibility, depletion of Chk1 and Claspin together doubled the percentage of very slow forks, compared with depletion of either protein alone.  相似文献   

9.
XRCC3 was inactivated in human cells by gene targeting. Consistent with its role in homologous recombination, XRCC3(-/-) cells showed a two-fold sensitivity to DNA cross-linking agents, a mild reduction in sister chromatid exchange, impaired Rad51 focus formation and elevated chromosome aberrations. Furthermore, endoreduplication was increased five- seven-fold in the mutants. The T241M variant of XRCC3 has been associated with an increased cancer risk. Expression of the wild-type cDNA restored this phenotype, while expression of the variant restored the defective recombinational repair, but not the increased endoreduplication. RPA, a protein essential for homologous recombination and DNA replication, is associated with XRCC3 and Rad52. Overexpression of RPA promoted endoreduplication, which was partially complemented by overexpression of the wild-type XRCC3 protein, but not by overexpression of the variant protein. Overexpression of Rad52 prevented endoreduplication in RPA-overexpressing cells, in XRCC3(-/-) cells and in the variant-expressing cells, suggesting that deregulated RPA was responsible for the increased endoreduplication. These observations offer the first genetic evidence for the association between homologous recombination and replication initiation having a role in cancer susceptibility.  相似文献   

10.
Slx1 and Slx4 are subunits of a structure-specific DNA endonuclease that is found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other eukaryotic species. It is thought to initiate recombination events or process recombination structures that occur during the replication of the tandem repeats of the ribosomal DNA (rDNA) locus. Here, we present evidence that fission yeast Slx1-Slx4 initiates homologous recombination events in the rDNA repeats that are processed by a mechanism that requires Rad22 (Rad52 homologue) but not Rhp51 (Rad51 homologue). Slx1 is required to generate approximately 50% of the spontaneous Rad22 DNA repair foci that occur in cycling cells. Most of these foci colocalize with the nucleolus, which contains the rDNA repeats. The increased fork pausing at the replication fork barriers in the rDNA repeats in a strain that lacks Rqh1 DNA helicase is further increased by expression of a dominant negative form of Slx1. These data suggest that Slx1-Slx4 cleaves paused replication forks in the rDNA, leading to Rad22-dependent homologous recombination that is used to maintain rDNA copy number.  相似文献   

11.
SMARCAL1 (also known as HARP) is a SWI/SNF family protein with an ATPase activity stimulated by DNA containing both single-stranded and double-stranded regions. Mutations in SMARCAL1 are associated with the disease Schimke immuno-osseous dysplasia, a multisystem autosomal recessive disorder characterized by T cell immunodeficiency, growth inhibition, and renal dysfunction. The cellular function of SMARCAL1, however, is unknown. Here, using Xenopus egg extracts and mass spectrometry, we identify SMARCAL1 as a protein recruited to double-stranded DNA breaks. SMARCAL1 binds to double-stranded breaks and stalled replication forks in both egg extract and human cells, specifically colocalizing with the single-stranded DNA binding factor RPA. In addition, SMARCAL1 interacts physically with RPA independently of DNA. SMARCAL1 is phosphorylated in a caffeine-sensitive manner in response to double-stranded breaks and stalled replication forks. It has been suggested that stalled forks can be stabilized by a mechanism involving caffeine-sensitive kinases, or they collapse and subsequently recruit Rad51 to promote homologous recombination repair. We show that depletion of SMARCAL1 from U2OS cells leads to increased frequency of RAD51 foci upon generation of stalled replication forks, indicating that fork breakdown is more prevalent in the absence of SMARCAL1. We propose that SMARCAL1 is a novel DNA damage-binding protein involved in replication fork stabilization.  相似文献   

12.
Replication stress from stalled or collapsed replication forks is a major challenge to genomic integrity. The anticancer agent camptothecin (CPT) is a DNA topoisomerase I inhibitor that causes fork collapse and double-strand breaks amid DNA replication. Here we report that hMSH5 promotes cell survival in response to CPT-induced DNA damage. Cells deficient in hMSH5 show elevated CPT-induced γ-H2AX and RPA2 foci with concomitant reduction of Rad51 foci, indicative of impaired homologous recombination. In addition, CPT-treated hMSH5-deficient cells exhibit aberrant activation of Chk1 and Chk2 kinases and therefore abnormal cell cycle progression. Furthermore, the hMSH5-FANCJ chromatin recruitment underlies the effects of hMSH5 on homologous recombination and Chk1 activation. Intriguingly, FANCJ depletion desensitizes hMSH5-deficient cells to CPT-elicited cell killing. Collectively, our data point to the existence of a functional interplay between hMSH5 and FANCJ in double-strand break repair induced by replication stress.  相似文献   

13.
Homologous recombination (HR) plays a critical role in the restart of blocked replication forks, but how this is achieved remains poorly understood. We show that mutants in the single Rad51 paralog in Caenorhabditis elegans, rfs-1, permit discrimination between HR substrates generated at DNA double-strand breaks (DSBs), or following replication fork collapse from HR substrates assembled at replication fork barriers (RFBs). Unexpectedly, RFS-1 is dispensable for RAD-51 recruitment to meiotic and ionizing radiation (IR)-induced DSBs and following replication fork collapse, yet, is essential for RAD-51 recruitment to RFBs formed by DNA crosslinking agents and other replication blocking lesions. Deletion of rfs-1 also suppresses the accumulation of toxic HR intermediates in him-6; top-3 mutants and accelerates deletion formation at presumed endogenous RFBs formed by poly G/C tracts in the absence of DOG-1. These data suggest that RFS-1 is not a general mediator of HR-dependent DSB repair, but acts specifically to promote HR at RFBs. HR substrates generated at conventional DSBs or following replication fork collapse are therefore intrinsically different from those produced during normal repair of blocked replication forks.  相似文献   

14.
Replication fork reversal protects forks from breakage after poisoning of Topoisomerase 1. We here investigated fork progression and chromosomal breakage in human cells in response to a panel of sublethal genotoxic treatments, using other topoisomerase poisons, DNA synthesis inhibitors, interstrand cross-linking inducers, and base-damaging agents. We used electron microscopy to visualize fork architecture under these conditions and analyzed the association of specific molecular features with checkpoint activation. Our data identify replication fork uncoupling and reversal as global responses to genotoxic treatments. Both events are frequent even after mild treatments that do not affect fork integrity, nor activate checkpoints. Fork reversal was found to be dependent on the central homologous recombination factor RAD51, which is consistently present at replication forks independently of their breakage, and to be antagonized by poly (ADP-ribose) polymerase/RECQ1-regulated restart. Our work establishes remodeling of uncoupled forks as a pivotal RAD51-regulated response to genotoxic stress in human cells and as a promising target to potentiate cancer chemotherapy.  相似文献   

15.
Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1−/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1−/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3−/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1−/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1−/− cells are associated with the accumulation of aberrant replication fork structures.  相似文献   

16.
The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3) are expressed in mitotically growing cells and are thought to play mediating roles in homologous recombination, although their precise functions remain unclear. Among the five paralogs, Rad51C was found to be a central component present in two complexes, Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2. We have shown previously that the human Rad51C protein exhibits three biochemical activities, including DNA binding, ATPase, and DNA duplex separation. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA-cross-linking agent mitomycin C and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G(2)/M phases of the cell cycle but not in G(1) phase. Together, these results provide direct cellular evidence for the function of human Rad51C in homologous recombinational repair.  相似文献   

17.
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.  相似文献   

18.
Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous gammaH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that gammaH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.  相似文献   

19.
Ahn JS  Osman F  Whitby MC 《The EMBO journal》2005,24(11):2011-2023
Homologous recombination is believed to play important roles in processing stalled/blocked replication forks in eukaryotes. In accordance with this, recombination is induced by replication fork barriers (RFBs) within the rDNA locus. However, the rDNA locus is a specialised region of the genome, and therefore the action of recombinases at its RFBs may be atypical. We show here for the first time that direct repeat recombination, dependent on Rad22 and Rhp51, is induced by replication fork blockage at a site-specific RFB (RTS1) within a 'typical' genomic locus in fission yeast. Importantly, when the RFB is positioned between the direct repeat, conservative gene conversion events predominate over deletion events. This is consistent with recombination occurring without breakage of the blocked fork. In the absence of the RecQ family DNA helicase Rqh1, deletion events increase dramatically, which correlates with the detection of one-sided DNA double-strand breaks at or near RTS1. These data indicate that Rqh1 acts to prevent blocked replication forks from collapsing and thereby inducing deletion events.  相似文献   

20.
In both Schizosaccharomyces pombe and Saccharomyces cerevisiae, Mms22 and Mms1 form a complex with important functions in the response to DNA damage, loss of which leads to perturbations during replication. Furthermore, in S. cerevisiae, Mms1 has been suggested to function in concert with a Cullin-like protein, Rtt101/Cul8, a potential paralog of Cullin 4. We performed epistasis analysis between Δmms1 and mutants of pathways with known functions in genome integrity, and measured the recruitment of homologous recombination proteins to blocked replication forks and recombination frequencies. We show that, in S. pombe, the functions of Mms1 and the conserved components of the Cullin 4 ubiquitin ligase, Pcu4 and Ddb1, do not significantly overlap. Furthermore, unlike in S. cerevisiae, the function of the H3K56 acetylase Rtt109 is not essential for Mms1 function. We provide evidence that Mms1 function is particularly important when a single strand break is converted into a double strand break during replication. Genetic data connect Mms1 to a Mus81 and Rad22(Rad52) dependent, but Rhp51 independent, branch of homologous recombination. This is supported by results demonstrating that Mms1 is recruited to a site-specific replication fork barrier and that, in a Δmms1 strain, Rad22(Rad52) and RPA recruitment to blocked forks are reduced, whereas Rhp51 recruitment is unaffected. In addition, Mms1 appears to specifically promote chromosomal rearrangements in a recombination assay. These observations suggest that Mms1 acts to channel repair of perturbed replication into a particular sub-pathway of homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号