首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The purpose of this study was to determine whether chronic exercise training is associated with increased vascular flow capacity and capillary exchange capacity in skeletal muscles. One group of male Sprague-Dawley rats was cage confined for a period of 13-17 wk (sedentary control, C) and a second was trained for 1 h/day at a speed of 30 m/min up a 5 degrees incline for 13-17 wk (exercise trained, ET). Studies were conducted with maximally dilated (papaverine) isolated hindquarters of 13 C rats and 10 ET rats perfused with Tyrode's solution containing 5% albumin. Vascular flow capacity was estimated by measuring total and regional flows at three to five different perfusion pressures. Capillary exchange capacity was estimated by measuring maximal capillary filtration coefficients and capillary diffusion capacity for 51Cr-ethylenediaminetetraacetic acid (51Cr-EDTA). The efficacy of the training was shown by significant increases in succinate dehydrogenase activities of the vastus intermedius muscle. Total hindquarter flow capacity was 50% higher in the ET rats. Regional flow data indicated that the higher total flow was due to increased muscle flow (85%), with the high-oxidative muscle tissue having the greatest increases (e.g., 200% increase in red gastrocnemius muscle). The maximal capillary diffusion capacity values for the ET rats were 70% greater than control values. However, the capillary filtration capacity values of the C and ET rats were not different. We conclude that the vascular transport capacity of the high-oxidative areas of extensor muscles is increased by endurance training.  相似文献   

2.
The purpose of this study was to determine the effects of high-intensity treadmill exercise training on 1) the regional distribution of muscle blood flow within and among muscles in rats during high-intensity treadmill exercise (phase I) and 2) on the total and regional hindlimb skeletal muscle blood flow capacities as measured in isolated perfused rat hindquarters during maximal papaverine vasodilation (phase II). Two groups of male Sprague-Dawley rats were trained 5 days/wk for 6 wk with a program consisting of 6 bouts/day of 2.5-min runs at 60 m/min up a 15% grade with 4.5-min rest periods between bouts. After training, blood flows were measured with the radiolabeled microsphere technique (phase I) in pair-weighted sedentary control and exercise-trained rats while they ran at 60 m/min (0% grade). In phase II of the study, regional vascular flow capacities were determined at three perfusion pressures (30, 40, and 50 mmHg) in isolated perfused hindquarters of control and trained rats maximally vasodilated with papaverine. The results indicate that this exercise training program produces increases in the vascular flow capacity of fast-twitch glycolytic muscle tissue of rats. However, these changes were not apparent in the magnitude or distribution of muscle blood flow in conscious rats running at 60 m/min, since blood flows within and among muscles during exercise were the same in trained and control rats.  相似文献   

3.
Intact hindquarter vascular responses to abdominal aortic injections of subpressor doses of norepinephrine (0.01, 0.02, 0.03 μg) or tyramine (5, 10, 15 μg) were examined in young (2 12–3 months) spontaneously hypertensive rats (SHR) and age-matched Wistar-Kyoto (WKY) normotensives to ascertain whether altered vascular response to catecholamines in SHR could be detected in the presence of relatively constant systemic arterial perfusion pressure. Increases in vascular resistance (Δ mmHg. min/ml) and total decreases in blood flow volume (Δ ml) were determined by using electromagnetic flowmetry and blood flow integration techniques. Under a resting condition the abdominal aortic flow rate (ml/min) was similar between the SHR (8.7 ± 0.5) and WKY control (9.1 ± 0.5), whereas hindquarter vascular resistance was greater (73.8%) in SHR than in WKY normotensives (P < 0.05). The increase in vascular resistance in response to a low dose of norepinephrine (0.1 μg) was greater (85%) in SHR than in WKY rats (P < 0.05) and at higher doses of norepinephrine (0.02, 0.03 μg) there was a tendency of greater increase in resistance (20–30%) in SHR (0.05 < P < 0.1). Tyramine at all doses tested produced greater increases (50–66%) in resistance in SHR compared to WKY normotensives (P < 0.05). On the other hand, the decreases in the integrated total blood flow volume passing to the hindquarters after norepinephrine or tyramine administration at all doses were less (27–46%) in SHR than in WKY control (P < 0.05). The data demonstrate increased catecholamine vasoconstrictor responses in the intact hindquarters of SHR with attenuated blood flow volume decreases due to the higher resting vascular resistance, supporting the contention that the elevated vascular resistance in SHR may be attributed to vasoconstrictor hyperresponsiveness of catecholamines.  相似文献   

4.
Capillary pressures in isogravimetric lung and skeletal muscle measured with the double vascular occlusion technique (Pdo) were compared to those measured using the traditional gravimetric technique (Pc,i). Pressures were measured using both techniques in isolated blood-perfused canine lungs (n = 18), blood-perfused rat hindquarters before (n = 8) and after (n = 6) maximal dilatation with papaverine and in rat hindquarters perfused with an artificial plasma (n = 6). In both organs, regardless of vascular tone, the double vascular occlusion isogravimetric pressure was the same as the gravimetric Pc,i, and the two measurements were highly correlated. Lung: Pdo = -0.22 + 1.06 Pc,i (r = 0.85, P less than 0.01); hindquarter: Pdo = -1.03 + 0.99 Pc,i (r = 0.91, P less than 0.01). In addition, Pdo was the same at every combination of isogravimetric arterial and venous pressures tested. The results indicate that the more rapidly applied double vascular occlusion pressure yields an accurate measure of isogravimetric capillary pressure in isolated organs over a wide range of isogravimetric pressures.  相似文献   

5.
A pump-perfused extracorporeal digital preparation was used to evaluate blood flow, arterial pressure, venous pressure, isogravimetric capillary filtration coefficient, capillary pressure, and vascular compliance in six normal horses. From these data, pre- and postcapillary resistances and pre- and postcapillary resistance ratios were determined. Vascular and tissue oncotic pressures were estimated from plasma and lymph protein concentrations, respectively. By use of the collected and calculated data, tissue pressure in the digit was calculated using the Starling equation. In the isolated equine digit, isogravimetric capillary pressure averaged 36.7 mmHg, plasma and lymph oncotic pressures averaged aged 19.12 and 6.6 mmHg, respectively, interstitial fluid pressure averaged 25.6 mmHg, and the capillary filtration coefficient averaged 0.0013 ml.min-1.mm-1.100 g-1. Our results indicate that digital capillary pressure in the laterally recumbent horse is much higher than in analogous tissues in other species such as dog and human. However, the potential edemagenic effects of this high digital capillary pressure are opposed by at least two mechanisms: 1) a high tissue pressure and 2) a low microvascular surface area for fluid exchange and/or a low microvascular permeability to filtered fluid.  相似文献   

6.
Pressure-flow curves were constructed to determine whether acute autoregulation in rat skeletal muscle was altered during the development of hypertension in the spontaneously hypertensive rat (SHR). Under chloralose:urethane anesthesia, hindlimb blood flow and pressure, plus diameter changes of gracilis muscle arterioles, were simultaneously measured in the 6- and 9-week Wistar-Kyoto (WKY) and SHR. Femoral blood flow was measured by electromagnetic flowmetry and hindlimb pressure controlled with an hydraulic occluder. Arteriolar diameters were measured using image shearing techniques. Acute autoregulatory capacity was assessed by comparing the closed-loop gain and the regression lines over the regulated and passive pressure ranges of the pressure-flow curves. The lower pressure limit of autoregulation (LPLAR) shifted upward as the blood pressure increased in the SHR with age; it did not shift in the WKY. Resting hindlimb flow, elevated in the SHR at 6 weeks, was also elevated at the LPLAR. At 9 weeks hindlimb blood flow was comparable in the WKY and SHR. As blood pressure was increased autoregulation was accompanied by vasoconstriction of gracilis arterioles. However, neither the gain of the autoregulatory system nor the regression lines describing the pressure-flow curves were different between the hypertensive and normotensive animals at either age. These results indicate that the acute autoregulatory response mechanism was not affected by the developing hypertension in the SHR, and is consistent with a structural basis for the chronic maintenance of the elevated peripheral vascular resistance.  相似文献   

7.
Ischemia and reperfusion in skeletal muscle is associated with increases in total vascular resistance (Rt) and the microvascular permeability to plasma proteins. To determine whether exercise training can attenuate ischemia and reperfusion-induced microvascular injury in skeletal muscle, intact (with skin) and skinned, maximally vasodilated (papaverine), isolated hindquarters of control (C) and exercise-trained (ET) rats were subjected to ischemia (intact 120 min; skinned 60 min) followed by 60 min of reperfusion. ET rats ran on a motorized treadmill at 32 m/min (8% grade), 2 h/day for 12 wk, whereas the C rats were cage confined. Before ischemia, ET hindquarters had higher isogravimetric flow, lower Rt, and similar solvent drag reflection coefficients (sigma f) compared with C. During reperfusion in intact hindquarters, flow was higher (P less than 0.05) and Rt tended to be lower (15 +/- 2 vs. 25 +/- 5 mmHg.ml-1.min.100 g; P less than 0.1) in ET compared with C; however, in skinned hindquarters flow and Rt (14 +/- 2 vs. 13 +/- 2 mmHg.ml-1.min.100 g) were not different between C and ET. During reperfusion, sigma f was reduced (P less than 0.05) in both intact (C 0.68 +/- 0.03; ET 0.68 +/- 0.02) and skinned (C 0.66 +/- 0.03; ET 0.68 +/- 0.03) hindquarters, indicative of an increased microvascular permeability to plasma proteins. These results indicate that exercise training did not attenuate the microvascular injury (increased Rt and decreased sigma f) associated with ischemia and reperfusion in rat skeletal muscle.  相似文献   

8.
To test the hypothesis that exercise training can reverse the decrements in coronary reserve, capillary density, and mitochondrial volume density evident during established hypertension, we trained spontaneously hypertensive (SHR) and normotensive (WKY) rats on a treadmill over a 3-mo period. At 7 mo of age we used microspheres to evaluate myocardial perfusion in conscious rats. Exercise training did not alter hypertension or left ventricular hypertrophy but did increase maximal O2 consumption in both SHR and WKY. A decrement in left and right ventricular coronary reserve in SHR, compared with WKY, was indicated by 1) a smaller increment in myocardial perfusion during maximal vasodilation with dipyridamole and 2) a higher minimal coronary vascular resistance per unit mass. Exercise training had no significant effect on any index of myocardial perfusion in SHR or WKY. A 12% decrement in capillary numerical density in the endomyocardium of SHR was not reversed by exercise training. We estimated the volume densities of mitochondria, myofibrils, and sarcoplasm using electron microscopy and point-counting stereology on perfusion-fixed hearts. None of the parameters in either SHR or WKY was changed by exercise training. It is concluded that exercise training does not reverse the decrements in coronary reserve and capillary numerical density associated with hypertension in adult rats. Moreover the previously observed enhancement of mitochondrial volume density due to exercise in young hypertensive rats was not observed in adult SHR.  相似文献   

9.
We investigated the long-term effect of metformin treatment on blood pressure, insulin sensitivity, and vascular responses to insulin in conscious spontaneously hypertensive rats (SHR). The rats were instrumented with intravascular catheters and pulsed Doppler flow probes to measure blood pressure, heart rate, and blood flow. Insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp technique. Two groups of SHR received metformin (100 or 300 mg x kg(-1) x day(-1)) for 3 wk while another group of SHR and a group of Wistar Kyoto (WKY) rats were left untreated. We found that vasodilation of skeletal muscle and renal vasculatures by insulin is impaired in SHR. Moreover, a reduced insulin sensitivity was detected in vivo and in vitro in isolated soleus and extensor digitorum longus muscles from SHR compared with WKY rats. Three weeks of treatment with metformin improves the whole-body insulin-mediated glucose disposal in SHR but has no blood pressure-lowering effect and no influence on vascular responses to insulin (4 mU x kg(-1) x min(-1)). An improvement in insulin-mediated glucose transport activity was detected in isolated muscles from metformin-treated SHR, but in the absence of insulin no changes in basal glucose transport activity were observed. It is suggested that part of the beneficial effect of metformin on insulin resistance results from a potentiation of the hormone-stimulating effect on glucose transport in peripheral tissues (mainly skeletal muscle). The results argue against a significant antihypertensive or vascular effect of metformin in SHR.  相似文献   

10.
Ischemia-reperfusion injury in isolated rat hindquarters   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the suitability of the maximally vasodilated (papaverine) isolated rat hindquarters preparation to study the effects of ischemia and reperfusion on the microvasculature of skeletal muscle. The osmotic reflection coefficient for plasma proteins (sigma) and total vascular resistance (RT, mmHg.ml-1.min.100 g-1) were determined before ischemic periods of 30, 60, 120, 180, and 240 min in intact (with skin) and 30, 60, and 120 min in skinned hindquarters and again after 60 min of reperfusion. In both intact and skinned hindquarters, reductions in sigma and increases in RT were observed during reperfusion and were correlated with the ischemic period duration. After 120 min of ischemia in intact and skinned hindquarters, sigma was reduced from preischemia values of 0.92 +/- 0.02 and 0.89 +/- 0.02 to 0.61 +/- 0.03 and 0.57 +/- 0.03, respectively, whereas RT was increased from preischemia levels of 8.9 +/- 0.3 and 8.1 +/- 0.1 to 28.4 +/- 2.9 and 74.2 +/- 16.8, respectively. The increases in RT were associated with proportional increases in skeletal muscle vascular resistance. Thus, in isolated rat hindquarters, increasing the duration of ischemia results in progressive increases in the permeability to plasma proteins (decreased sigma) and RT, which are associated primarily with skeletal muscle.  相似文献   

11.
In situ analysis of microvascular pericytes in hypertensive rat brains   总被引:2,自引:0,他引:2  
We used immunofluorescence microscopy and isoactin-specific antibodies to characterize the pattern and prevalence of pericytes within the brain microcirculation. Blood pressures of normotensive, Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were measured prior to sacrifice and pressure-perfusion fixation. WKY and SHR brains were subdivided into ten major regions prior to ultracryomicrotomy. Sections 0.3-0.5 micron wide were treated with 10-40 micrograms/ml affinity-purified antibodies to the muscle and non-muscle actin isoforms. These localization studies show that there are four times the number of pericyte-rich capillaries in the SHR motor cortex compared to WKY counterparts (59.9 vs. 15.3%). In contrast, the sensory cortex of both rat strains is deficient in muscle actin staining surrounding the capillaries. The most striking difference in pericyte presence and muscle actin antibody staining between the SHR and WKY was observed in the tegmentum of the brainstem. There is nearly a one-to-one coincidence observed in pericyte and capillary profiles present within thin, frozen sections of the SHR midbrain. SHR pons capillaries were also pericyte-enriched. WKY analyses of plastic embedded thin sections confirmed the presence of pericytes and their filament-enriched processes encircling the capillaries of the hypertensive brains. These results suggest that pericytes may play important roles in hypertension and cerebrovascular disease processes.  相似文献   

12.
Large mesenteric arteries from 3- to 4-wk-old spontaneously hypertensive rats (SHR) showed medial hypertrophy and an increased contractile response to various agonists before significant blood pressure increase. Here we determined the cellular nature of this vascular hypertrophy. Large mesenteric arteries from SHR and Wistar-Kyoto (WKY) rats were fixed at maximal relaxation either with an in situ perfusion fixation or an in vitro fixation method. With the use of morphometric protocols and confocal microscopy, the volume of the medial wall and lumen, numerical density of smooth muscle cell nuclei in the medial layer, and smooth muscle cell and nuclear length were measured. Both methods of fixation yielded similar results, showing significant medial volume expansion in SHR than WKY without lumen change. Numerical density of medial smooth muscle cells was significantly less in SHR than WKY, and their total number per 100 microm length were similar between the strains. Average smooth muscle nuclear and cell length from SHR was significantly longer than that of WKY. Regression analysis showed that the increase in smooth muscle cell length explained 80% of the medial volume increase. We concluded that increased smooth muscle cell length in prehypertensive SHR is responsible for increased medial volume in the mesenteric arteries.  相似文献   

13.
The role of red blood cell (RBC) aggregation as a determinant of in vivo blood flow is still unclear. This study was designed to investigate the influence of a well-controlled enhancement of RBC aggregation on blood flow resistance in an isolated-perfused heart preparation. Guinea pig hearts were perfused through a catheter inserted into the root of the aorta using a pressure servo-controlled pump system that maintained perfusion pressures of 30 to 100 mmHg. The hearts were beating at their intrinsic rates and pumping against the perfusion pressure. RBC aggregation was increased by Pluronic (F98) coating of RBC at a concentration 0.025 mg/ml, corresponding to about a 100% increment in RBC aggregation as measured by erythrocyte sedimentation rate. Isolated heart preparations were perfused with 0.40 l/l hematocrit unmodified guinea pig blood and with Pluronic-coated RBC suspensions in autologous plasma. At high perfusion pressures there were no significant differences between the flow resistance values for the two perfusates, with differences in flow resistance only becoming significant at lower perfusion pressures. These results can be interpreted to reflect the shear dependence of RBC aggregation: higher shear forces associated with higher perfusion pressures should have dispersed RBC aggregates resulting in blood flow resistances similar to control values. Experiments repeated in preparations in which the smooth muscle tone was inhibited by pre-treatment with papaverine indicated that significant effects of enhanced RBC aggregation could be detected at higher perfusion pressures, underlining the compensatory role of vasomotor control mechanisms.  相似文献   

14.
The Spontaneously Hypertensive rat (SHR) and its non-hypertensive companion strain, the Wistar-Kyoto (WKY) rat, provide an excellent comparative model to permit study of the differential properties of cutaneous microvascular beds. We explored the possibility that chronically elevated vascular pressures in the SHR rat might affect the microvascular constitution of the skin. We measured skin blood flow at the back and at the paw of a group of 20-week-old WKY rats and a contrast group of SHR rats. We then performed skin biopsies at these two locations and used the NIH Image program to count and measure the size of capillaries, arterioles, and venules. We also determined microvascular density as percentage of total tissue area. At basal temperature, skin blood flow was similar in the two rat strains at both the back and paw. Heat induced vasodilatation resulted in a 50% increase in blood flow at the back, reaching the same level in the two rat groups. However, at the paw site, thermal stimulation resulted in significantly greater flow (39.3 +/- 3.1 ml/100 gm tissue per min) in the SHR rats than the WKY rats (28.6 +/- 1.9 ml/100 gm tissue per min, P < 0.05). The ratio of systemic arterial pressure to skin blood flow was computed as an index of vascular resistance to flow. At basal temperature, this index was 50% greater for the SHR rats at both skin sites. At 44 degrees C, the resistance index decreased at both sites in both rat groups but was still approximately 50% higher at the back of the SHR than the WKY rats. In contrast, the resistance index at 44 degrees C at the paw site fell to the same level in both the SHR and WKY rats. There were twice as many capillaries at the back of the WKY rats than at the back of the SHR rats (9.2 +/- 2.0 per mm2 vs. 4.7 +/- 1.2 per mm2, P < 0.05). Expressed as a percentage of total tissue area, the capillary density at the back in the WKY rats was 0.064 +/- 0.010% as compared to 0.034 +/- 0.008% in the SHR rats (P < 0.05). There were five times more arterioles at the paw compared to the back in both rat groups with no significant difference between the groups. We measured the diameter of the lumen and the thickness of the wall of each arteriole and computed their ratio as an index of possible media hypertrophy. There were minimal differences seen in these parameters between the two rat groups at the back and paw sites. The venular density was significantly higher at the paw than at the back in both rat groups with no significant difference between them. Reduced capillary density at the back of the SHR rats may be a developmental adaptation to high blood pressure. Such a reduction in the pathways of blood flow may help account for increased flow resistance at that site, independent of arteriolar vasoconstriction.  相似文献   

15.
Exercise training increases coronary transport reserve in miniature swine   总被引:4,自引:0,他引:4  
Female yucatan miniature swine were trained on a treadmill (ET) or were cage confined (C) for 16-22 wk. The ET pigs had increased exercise tolerance, heart weight-to-body weight ratio, and skeletal muscle oxidative capacity. After anesthesia the left anterior descending coronary artery was cannulated and pump perfused with blood while aortic, central venous, and coronary perfusion pressures, electrocardiogram, heart rate, and coronary blood flow were monitored. Capillary permeability-surface area product (PS) for EDTA was determined with the single-injection indicator-diffusion method by use of an organ model based on the Sangren-Sheppard equations for capillary transport. Coronary blood flow (CBF) and PS were compared before and during maximal adenosine vasodilation with coronary perfusion pressures at 120 mmHg. Results indicate that there were no differences in base-line CBF or PS between C and ET groups. alpha-Receptor blockade with phentolamine and/or prazosin, before adenosine vasodilation, produced increases in PS in C pigs but had little effect in ET pigs. During maximal vasodilation with adenosine, ET pigs had greater CBF (447 +/- 24 vs. 366 +/- 27 ml.min-1.100 g-1) and greater PS (83 +/- 9 vs. 55 +/- 7 ml.min-1.100 g-1) than the C group. It is concluded that ET induces an increased coronary transport capacity in miniature swine that includes a 22% increase in blood flow capacity and a 51% increase in capillary exchange capacity.  相似文献   

16.
This study was designed to investigate the effects of a sucrose diet on vascular and metabolic actions of insulin in spontaneously hypertensive rats (SHR). Male SHR were randomized to receive a sucrose or regular chow diet for 4 wk. Age-matched, chow-fed Wistar-Kyoto (WKY) rats were used as normotensive control. In a first series of experiments, the three groups of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and blood flows. Insulin sensitivity was assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine glucose transport activity in isolated muscles and to determine endothelial nitric oxide synthase (eNOS) protein expression in muscles and endothelin content in vascular tissues. Sucrose feeding was shown to markedly enhance the pressor response to insulin and its hindquarter vasoconstrictor effect when compared with chow-fed SHR. A reduction in eNOS protein content in muscle, but no change in vascular endothelin-1 protein, was noted in sucrose-fed SHR when compared with WKY rats, but these changes were not different from those noted in chow-fed SHR. Similar reductions in insulin-stimulated glucose transport were observed in soleus muscles from both groups of SHR when compared with WKY rats. In extensor digitorum longus muscles, a significant reduction in insulin-stimulated glucose transport was only seen in sucrose-fed rats when compared with the other two groups. Environmental factors, that is, high intake of simple sugars, could possibly potentiate the genetic predisposition in SHR to endothelial dysfunction and insulin resistance.  相似文献   

17.
N-ethylmaleimide (NEM) has been claimed to markedly inhibit the transvascular passage of small proteins and albumin by interacting with the docking and fusion of plasmalemmal vesicles with their target membranes. To investigate the role of transcytosis in the transcapillary passage of albumin, we assessed the effects of NEM on (125)I-labeled radioiodinated serum albumin clearance (RISA-Cl) from blood to muscle in isolated and maximally vasodilated perfused rat hindquarters, in which vascular pressures, pre- and postcapillary resistances, and the capillary filtration coefficient (CFC) were continuously monitored. NEM (0.3-0.5 mM) caused a marked increase mainly in precapillary vascular resistance. Thus the arterial-to-venous resistance ratio in NEM-treated animals was 3.12 +/- 0.56 versus 1.66 +/- 0.17 during the control period (P < 0.05). Despite that, there was a doubling of both CFC from 0.0363 +/- 0.0028 to 0.0778 +/- 0.0101 ml x min(-1) x mmHg(-1) x 100 g(-1) (P < 0.01) and RISA-Cl, compared with the control situation, signaling markedly increased microvascular permeability. Our results strongly suggest that NEM, besides producing marked vasoconstriction, also causes damage to the capillary endothelium. Thus, instead of inhibiting transvascular transport, NEM may induce increases in the bulk transport of albumin from blood to tissue.  相似文献   

18.
Vasomotor control by the sympathetic nervous system presents substantial heterogeneity within different tissues, providing appropriate homeostatic responses to maintain basal/stimulated cardiovascular function both at normal and pathological conditions. The availability of a reproducible technique for simultaneous measurement of sympathetic drive to different tissues is of great interest to uncover regional patterns of sympathetic nerve activity (SNA). We propose the association of tyrosine hydroxylase immunoreactivity (THir) with image analysis to quantify norepinephrine (NE) content within nerve terminals in arteries/arterioles as a good index for regional sympathetic outflow. THir was measured in fixed arterioles of kidney, heart, and skeletal muscle of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (123 ± 2 and 181 ± 4 mmHg, 300 ± 8 and 352 ± 8 beats/min, respectively). There was a differential THir distribution in both groups: higher THir was observed in the kidney and skeletal muscle (~3-4-fold vs. heart arterioles) of WKY; in SHR, THir was increased in the kidney and heart (2.4- and 5.3-fold vs. WKY, respectively) with no change in the skeletal muscle arterioles. Observed THir changes were confirmed by either: 1) determination of NE content (high-performance liquid chromatography) in fresh tissues (SHR vs. WKY): +34% and +17% in kidney and heart, respectively, with no change in the skeletal muscle; 2) direct recording of renal (RSNA) and lumbar SNA (LSNA) in anesthetized rats, showing increased RSNA but unchanged LSNA in SHR vs. WKY. THir in skeletal muscle arterioles, NE content in femoral artery, and LSNA were simultaneously reduced by exercise training in the WKY group. Results indicate that THir is a valuable technique to simultaneously evaluate regional patterns of sympathetic activity.  相似文献   

19.
Platelet-derived growth factor (PDGF) AB and BB isoforms were potent mitogens for cultured vascular smooth muscle cells from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). PDGF-AA promotes protein synthesis in a dose-dependent manner in SHR cells, whereas DNA synthesis was stimulated only slightly. However, this isoform did not activate either DNA or protein synthesis in WKY cells. PDGF-AA stimulated tyrosine phosphorylation of its receptor protein and phospholipase C-gamma 1 in SHR cell but not in WKY cells. These results indicate that vascular smooth muscle cell of SHR is uniquely responsive to PDGF-AA, presumably due to abnormality in receptor expression, in its hypertrophic response.  相似文献   

20.
The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P(IM)) and concomitant increase in venous resistance. Although P(IM) is distributed during contractions, this theory does not account for heterogeneity. This study hypothesises that pressure heterogeneity could affect the interaction between P(IM) rise and perfusion. Regional tissue perfusion during submaximum (100kPa) tetanic contraction is studied, using a finite element model of perfused contracting skeletal muscle. Capillary flow in muscles with one proximal artery and vein (SIM(1)) and with an additional distal artery and vein (SIM(2)) is compared. Blood flow and pressures at rest and P(IM) during contraction ( approximately 25kPa maximally) are similar between simulations, but capillary flow and venous pressure differ. In SIM(2), venous pressure and capillary flow correspond to P(IM) distribution, whereas capillary flow in SIM(1) is less than 10% of flow in SIM(2), in the muscle half without draining vein. This difference is caused by a high central P(IM), followed by central venous pressure rise, in agreement with the waterfall theory. The high central pressure (SIM(1)), obstructs outflow from the distal veins. Distal venous pressure rises until central blood pressure is reached, although local P(IM) is low. Adding a distal vein (SIM(2)) restores the perfusion. It is concluded that regional effects contribute to the interaction between P(IM) and perfusion during contraction. Unlike stated by the vascular waterfall theory, venous pressure may locally exceed P(IM). Although this can be explained by the principles of this theory, the theory does not include this phenomenon as such.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号