首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
韧皮部的解离及观察郝建华(甘肃省庆阳师范专科学校生物学系745000)输导组织是一种复合组织,其结构和组成较其它组织复杂。笔者结合大关杨韧皮部的研究工作,尝试对韧皮部进行了解离,效果较好。正取材及固定。在树木每年生长季中期(北方一般为5月中旬至8月初...  相似文献   

2.
研究了池养鲥鱼生长特征,结果表明,其生长速度随季节和水温而变化,以9月中旬至11月中旬和5月中旬至7月中旬生长较快,适宜生长水温为25-30℃。应用VonBertalanffy方程求得体长、体重生长方程Lt=518.95〔1-e^-0.3751(5-0.8763)〕,Wt=2205.5〔1-e^-0.3751(t-0.8763)〕^3,体重生长拐点位于2.8053处,属性成熟拐点,其生长速度和加速  相似文献   

3.
女贞和白蜡树的树皮结构及次生韧皮部发育的季节变化   总被引:4,自引:0,他引:4  
女贞(LigustrumbucidumAit)和白蜡树(FraxinuschinensisRoxb)是白蜡虫的两种主要寄主树。树皮由外向内为周皮,皮层,初生韧皮部的纤维束和次生韧皮部.它们的筛管分子具复筛板或单筛板,具P-蛋白质和筛管淀粉。伴胞为与筛管分等长的一列或单个细胞。筛管寿命在女贞中最长为一年,在白蜡树中则不超过8个月.形成层活动时间在女贞中是3月中下旬到11月中旬,在白蜡树中是3月中下旬到11月下旬.两种树木的木质部和韧皮部在3月中旬已开始分化,木质部和韧皮部分化停止的时间在女贞中分别是11月中旬和12月下旬;在白蜡树中分别是9月下旬和11月下旬.两种树木在冬季都有部分分化的筛管分子,白蜡树中的部分分化的筛管分子于秋季形成,翌年3月中旬成熟,同年9—10月瓦解。女贞枝条冬季平均保留170.2μm的具功能韧皮部区;而白蜡树在径向仅保留数列细胞宽的具功能韧皮都区越冬.  相似文献   

4.
宋策 《动物学杂志》1997,32(1):29-31
1993-1995年,连续三年在辽宁凤城地区对戴胜繁殖习性进行 观察。结果发现,戴胜每年3月中旬迁来,9月下旬迁离。每年繁殖两次,繁殖期在4月中旬至7月末。窝卵量:第一窝9-10枚,第二窝5-7枚。雌鸟边产卵边卵卵。孵卵期;第一窝18d,第二窝15d。  相似文献   

5.
李国范  曹福存 《植物研究》1994,14(3):280-286
本文研究了长白落叶松大小孢子叶球的分化及其分布规律。获得如下结果:(1)6月下旬芽鳞形成期终止,7月初进入小孢子叶分化期,7月未至8月上旬小孢子叶分化期结束。8月上旬进入小孢子囊分化期,8月下旬出现造孢细胞,9月中旬形成小孢子母细胞。10月底小孢子母细胞保持在细线期阶段,小孢子叶球进入冬季休眠期。(2)9月初苞片原基开始形成,9月中旬珠鳞原基形成;10月上旬出现胚珠原始体,10月下旬大孢子母细胞形  相似文献   

6.
本文研究了长白落叶松(LarixolgensisHenry)大小孢子叶球的分化及其分布规律.获得如下结果:(1)6月下旬芽鳞形成期终止,7月初进入小孢子叶分化期,7月未至8月上旬小孢子叶分化期结束.8月上旬进入小孢子囊分化期,8月下旬出现造孢细胞,9月中旬形成小孢子母细胞.10月底小孢子母细胞保持在细线期阶段,小孢子叶球进入冬季休眠期.(2)9月初苞片原基开始形成,9月中旬珠鳞原基形成;10月上旬出现胚珠原始体,10月下旬大孢子母细胞形成,10月底大孢子叶球芽进入冬季休眠.(3)小孢子叶球芽主要分布在树冠的中、下部.数量上远远大于大孢子叶球芽的数量,约为大孢子叶球芽的19倍。大孢子叶球芽主要集中分布在树冠中部,而且树冠下部多于树冠上部。  相似文献   

7.
黄腹角雉的饲养繁殖   总被引:5,自引:1,他引:4  
笼养下黄腹角雉自3月下旬开始产卵,6月中旬结束,产卵期持续近3个月。年产窝数3.5窝,年均产卵10.8枚/只雌鸟。1994,1995年卵的受精率和化率分别为26.7%。12.5%和68.6%,47.8%,对孵化率人低的原因进行了总结分析。  相似文献   

8.
东灵山地区辽东栎叶的生长及其光合作用   总被引:11,自引:3,他引:8  
孙书存  陈灵芝 《生态学报》2000,20(2):212-217
测定辽东栎叶在不同发育时期的长度,面积和干重,应用红外CO2技术测定叶的净光合速率和暗呼吸速率的季节变化和日变化,并根据叶的平均生长速率和净光合速率推算叶生长过程中碳的输入和输出的变化趋势。结果表明:⑴辽东栎叶的长度、面积和干重的增加有共同趋势,即在叶生长早期增加很快,其后渐渐降低。叶长度、面积约在6月初达极大值;叶干重稍后达极大值。⑵净光合速率在整个生长季里随叶的生长发育是先上升,至7月中旬达极  相似文献   

9.
小叶章系小叶章草地生态系统植物亚系统的主体。本文从叶片长度、宽度、面积、重量的空间分布格局与时间动态过程以及茎和节的季节变程等方面,对小叶章进行了比较全面的生长分析,同时,建立了小叶章地上器官与24个环境因子的逐步回归模型。小叶章叶片长、宽、面积及重量等性状均呈中间叶位数值大,两端者小的空间分布格局;小叶章茎高、书长的季节动态过程近于“S”形,可用Logistic曲线拟合,其指数生长期在5月下旬至6月中旬。小叶章茎及叶片诸性状的绝对增长速率(AGR)5月下旬至6月中旬较大;而相对增长速率(RGR)则在4月底至5月中旬较大。茎高最大绝对生长速率可达3.39cm/d(1988年6月2日),叶面积达0.1775cm ̄2/d(1989年6月1-4日)。小叶章叶片不同性状间具有显著的相关关系。其中,叶长(Ll)、叶宽(Lw)及叶片面积(La)间的关系为:Lw=0.1139+0.1180LlLa=-4.1685+0.2302Ll+14.9325Lw小叶章地上部分各器官的生长与降水成正相关,与蒸发和≥0℃的积温成负相关。此外,与5cm和20cm地温的关系亦比较密切.  相似文献   

10.
暖温带落叶阔叶林辐射能量环境初步研究   总被引:16,自引:1,他引:15  
孙雪峰  陈灵芝 《生态学报》1995,15(3):278-286
本文对暖温带落叶阔叶林辐射能量环境进行了初步探讨,文中对林、灌、草各层次的总、反、净、光台有效及吸收、透射等辐时因子的变化分别进行了系统分析。主要结论如下:(1)在生长季(5─10日)期间,抵达林冠的太阳总辐射为3095.45MJ·m ̄(-2),抵达灌草层的为388.34MJ·m ̄(-2)。峰值出现在5月,谷值在8月。(2)生氏季内,抵达群落的太阳总辐射主要集中于5、6两月,占整个生长季的40.99%。(3)生长季内,林冠上方净辐射总值为1658.74MJ·m ̄(-2)。(4)林冠反射主要受入射光的光谱特性及群落发育状况共同影响,反射率的变化主要与群落发育状况相关;灌草层的反射及后射率主要受群落发育状况的影响。(5)整个生长季,林冠所接收的光台有效辐时为1308.3MJ·m ̄(-2),灌草层为194.21MJ·m ̄(-2)。(6)净辐射日进程受气候因素影响十分强烈。(7)群落内光能资源的时空分布存在很大差异。  相似文献   

11.
Structure of the secondary phloem of Grewia tillaefolia Roxb.was studied in samples of bark collected at monthly intervalsfrom forest populations of Gujarat in western India. The secondaryphloem in this species is vertically storied and the axial elementsoccur as alternate tangential bands of fibres and sieve elementsproduced in succession. On average, two to four bands of fibresand corresponding bands of sieve elements are produced in ayear. The sieve elements function for more than one season anddifferent phloem increments are separated by terminal zonesmade up of very narrow sieve elements which mature just beforeand immediately after the period of dormancy. The tree becomesleafless about eight to ten weeks preceding the spring equinox.Cambial activity, phloem differentiation and phloem functionare suspended during this period. Differentiation of phloembegins after bud break which occurs in April, and continuesuntil January, but most of the phloem is produced between Julyand September when the rainy season is well advanced. The widthof the conducting zone is maximal at the end of the period ofgrowth when the tree is in full leaf. Inactivation of sieveelements, apparently by callose plugging the sieve plates, beginswith leaf abscission. The sieve elements produced in the precedingseason, just before dormancy is imposed resume function in thefollowing growing season and the older elements die. Companioncells and axial parenchyma cells surrounding sieve elementsappear to have s significant role during senescence of the conductingelements. The development and activity of the secondary phloemseem to be related to other developmental phenomena occurringwithin the tree.  相似文献   

12.
Early in April of 1987, cells in an undifferentiated state which overwintered on the phloem side of the cambial zone in the branch of Pterocarya stenoptera began to differentiate into merebets of phloem. Cambium divided actively in mid-April and ceased to decide by early-Novembet. Five to eleven bands of fibers alternating with the bands of sieve tubes, companion cells and phloem parenchyma cells produced every year. By mid to late April, new xylem differentiation began. Phloem and xylem differentiation ceased almost simultaneously. Functional sieve tube elements were present all the year round in the phloem. During winter, most sieve tubes produced in the current year ceased functioning, leaving only the zone of functional sieve tube of several rows of cells in width with open pores in the sieve plates. These sieve tubes did not collapse until mid-May. In October, several rows of partially differentiated sieve elements appeared near the cambial zone. They still possessed nuclei. The companion cells had produced but no P-protein. They matured during April of the following year and collapsed by July to September. The life span of sieve elements extended for 8 months at the most. In winter, there were less functional sieve tubes in the branch. This may be one of the reasons that only few Kerria yunnanensis survive on the branch of Pterocarya stenoptera.  相似文献   

13.
The cambium in black locust consists of several layers of cells at all times. Cambial reactivation (division) is preceded by a decrease in density of cambial cell protoplasts and cell wall thickening but not by cell enlargement. During the resumption of cambial activity, periclinal divisions occur throughout the cambial zone. Early divisions contribute largely to the phloem side. The period of greatest cambial activity coincides with early wood formation. Judged by numerous collections made during two seasons (October, 1960-October, 1962) the seasonal cycle of phloem development is as follows. Phloem differentiation begins in early April, ends in late September. The amount of phloem produced is quite variable (range: 1-10 bands of sieve elements per year). Cessation of function begins with the accumulation of definitive callose in the first-formed sieve elements and spreads to those more recently formed. By late November all but the last-formed sieve elements are collapsed. All sieve elements are collapsed by mid-winter and before the resumption of new phloem production in spring. Phloem differentiation precedes xylem differentiation by at least 1 week, and apparently functional sieve elements are present 3 weeks before new functional vessel elements. Xylem and phloem production ends simultaneously in most trees.  相似文献   

14.
In Juniperus californica, all sieve cells of the previous season's phloem growth increment overwinter in a mature state. Initiation of cambial activity begins in early March and, by the end of March, the oldest sieve cells that overwintered lose their contents and die. By mid-April, even the youngest sieve cells of the previous season's growth increment have lost their contents. The period of greatest cambial activity begins in the last half of April and continues through May. With the slowing of cambial activity in June, callose begins to collect on the sieve areas of the first-formed sieve cells of the new increment. By July, the cambium and phloem are in a dormant state. Initiation of phloem production precedes that of the xylem by about 1 month. Production of new xylem and phloem ceases simultaneously in July.  相似文献   

15.
Modification of external morphology and internal structure of plants is a key feature of their successful survival in extreme habitats. They adapt to arid habitats not only by modifying their leaves, but also show several modifications in their conducting system. Therefore, the present study is aimed to investigate the pattern of secondary growth in Leptadenia pyrotechnica (Forssk.) Decne., (Asclepiadaceae), one such species growing in Kachchh district, an arid region of Gujarat State. A single ring of vascular cambium, responsible for radial growth, divided bidirectionally and formed the secondary xylem centripetally and the phloem centrifugally. After a short period of secondary xylem differentiation, small arcs of cambium began to form secondary phloem centripetally instead of secondary xylem. After a short duration of such secondary phloem formation, these segments of cambium resumed their normal function to produce secondary xylem internally. Thus, the phloem strands became embedded within the secondary xylem and formed interxylary phloem islands. Such a recurrent behavior of the vascular cambium resulted in the formation of several patches of interxylary phloem islands. In thick stems the earlier formed non-conducting interxylary phloem showed heavy accumulation of callose on the sieve plates followed by their crushing in response to the addition of new sieve elements. Development of intraxylary phloem is also observed from the cells situated on the pith margin. As secondary growth progresses further, small arcs of internal cambium get initiated between the protoxylem and intraxylary phloem. In the secondary xylem, some of the vessels are exceptionally thick-walled, which may be associated with dry habitats in order to protect the vessel from collapsing during the dryer part of the year. The inter- and intraxylary phloem may also be an adaptive feature to prevent the sieve elements to become non-conducting during summer when the temperature is much higher.  相似文献   

16.
Summary Only one or two layers of sieve cells of the previous year's phloem in lateral branches of Larix decidua persist as fully mature cells. Immature sieve cells or cambial derivatives that have not completed differentiation may also over-winter. Periclinal cell divisions of the vascular cambium were first observed by mid-April. During the short period of greatest cambium activity (mid-April to mid-May), the early phloem is laid down. Late phloem is formed over a much longer period, from mid-May to late September. Microautoradiography revealed that only mature sieve cells of the early phloem are involved in translocation of 14C assimilates in June. The fine structure of actively translocating sieve cells is described. The impact of structure on long-distance transport of assimilates is discussed.  相似文献   

17.
The phloem of the Myristicaceae is composed of sieve elements, parenchymatous cells, and fibers. Within the metaphloem and secondary phloem parenchymatic layers including prominent secretory elements alternate with tangential bands of fibers and layers composed of sieve elements, companion cells and phloem-parenchyma cells. among the latter the sieve elements are most abundant and easily identified by the presence of thick (nacreous) walls. The most characteristic feature of the sieve elements of Myristicaceae (and found nowhere else among the Magnoliiflorae) are nuclear crystals, which are released into the lumen during nuclear degeneration and persist in the mature cell. P-and S-type sieve-element plastids were recorded for the 18 species investigated. Both types of the plastid are characterized by large diameters and many medium-sized starch grains. The sizes and contents (small protein crystals only) of the P-type plastids of the Myristicaceae do not conform to the tiny P-type plastids (with large protein crystals) of the Annonaceae, a family to which the Myristicaceae is traditionally allied.  相似文献   

18.
The conducting elements of phloem in angiosperms are a complex of two cell types, sieve elements and companion cells, that form a single developmental and functional unit. During ontogeny of the sieve element/companion cell complex, specific proteins accumulate forming unique structures within sieve elements. Synthesis of these proteins coincides with vascular development and was studied in Cucurbita seedlings by following accumulation of the phloem lectin (PP2) and its mRNA by RNA blot analysis, enzyme-linked immunosorbent assay, immunocytochemistry and in␣situ hybridization. Genes encoding PP2 were developmentally regulated during vascular differentiation in hypocotyls of Cucurbita maxima Duch. Accumulation of PP2 mRNA and protein paralleled one another during hypocotyl elongation, after which mRNA levels decreased, while the protein appeared to be stable. Both PP2 and its mRNA were initially detected during metaphloem differentiation. However, PP2 mRNA was detected in companion cells of both bundle and extrafascicular phloem, but never in differentiating sieve elements. At later stages of development, PP2 mRNA was most often observed in extrafascicular phloem. In developing stems of Cucurbita moschata L., PP2 was immunolocalized in companion cells but not to filamentous phloem protein (P-protein) bodies that characterize immature sieve elements of bundle phloem. In contrast, PP2 was immunolocalized to persistent ␣ P-protein bodies in sieve elements of the extrafascicular phloem. Immunolocalization of PP2 in mature wound sieve elements was similar to that in bundle phloem. It appears that PP2 is synthesized in companion cells, then transported into differentiated sieve elements where it is a component of P-protein filaments in bundle phloem and persistent P-protein bodies in extrafascicular phloem. This differential accumulation in bundle and extrafascicular elements may result from different functional roles of the two types of phloem. Received: 31 July 1996 / Accepted: 27 August 1996  相似文献   

19.
A light and electron microscope investigation was conducted on phloem in the aerial stem of Epifagus virginiana (L.) Bart. Tissue was processed at field collection sites in an effort to overcome problems resulting from manipulation. At variance with earlier accounts, Epifagus phloem consists of sieve elements, companion cells, phloem parenchyma cells, and primary phloem fibers. The sieve elements possess simple sieve plates and the phloem is arranged in a collateral type of vascular bundle. In addition, this constitutes the first study on phloem ultrastructure in the aerial stems of a holoparasitic dicotyledon, an entire plant which could be viewed as an “ideal sink.” Epifagus phloem possesses unoccluded sieve plate pores in mature sieve elements and a total lack of P-protein in sieve elements at all stages of development. Mature sieve elements lack nuclei. Plastids were rarely observed in mature sieve elements. Vacuoles with intact tonoplasts were encountered in some mature sieve elements. Otherwise, the ultrastructural features of sieve elements appear to differ little from those described by investigators of non-parasitic species.  相似文献   

20.
Secondary phloem anatomy of several species of Cycadeoidea is described from trunks in the Wieland Collection, Peabody Museum of Natural History. The trunks were collected from the Lakota Formation, Lower Cretaceous, Black Hills of South Dakota. Secondary phloem is extensively developed and consists of alternating, tangential bands of fibers and sieve elements, with rare phloem parenchyma. Uniseriate rays, 2-22 cells high, occur between every one to three files of the axial system. Fibers are long, more than 1200 μm, approximately 26.6-34.2 μm in diameter, and have slit-like apertures on the lateral walls. Sieve elements range from 16-25 μm in diameter and are up to 500 μm long. Elliptical sieve areas appear on both end and radial walls and measure 10 μm across; minute spots, which may represent sieve pores, are present within the sieve areas. Secondary phloem of North American Cycadeoidea is similar in organization (alternating tangential bands) and cell types (sieve cells, fibers, axial parenchyma) to that known in other extant and fossil cycadophytes and some seed ferns. The unusual pattern of cell types and thickness of secondary phloem is discussed in the context of plant habit, phloem efficiency, and potential phylogenetic importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号