首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several studies have reported markers linked to a putative resistance gene from Poncirus trifoliata (Ctv-R) located at linkage group 4 that confers resistance against one of the most important citrus pathogens, citrus tristeza virus (CTV). To be successful in both marker-assisted selection and transformation experiments, its accurate mapping is needed. Several factors may affect its localization, among them two are considered here: the definition of resistance and the genetic background of progeny.Two progenies derived from P. trifoliata, by self-pollination and by crossing with sour orange (Citrus aurantium), a citrus rootstock well-adapted to arid and semi-arid areas, were used for linkage group-4 marker enrichment. Two new methodologies were used to enrich this region with expressed sequences. The enrichment of group 4 resulted in the fusion of several C. aurantium linkage groups. The new one A(7+3+4) is now saturated with 48 markers including expressed sequences. Surprisingly, sour orange was as resistant to the CTV isolate tested as was P. trifoliata, and three hybrids that carry Ctv-R, as deduced from its flanking markers, are susceptible to CTV. The new linkage maps were used to map Ctv-R under the hypothesis of monogenic inheritance. Its position on linkage group 4 of P. trifoliata differs from the location previously reported in other progenies. The genetic analysis of virus-plant interaction in the family derived from C. aurantium after a CTV chronic infection showed the segregation of five types of interaction, which is not compatible with the hypothesis of a single gene controlling resistance. Two major issues are discussed: another type of genetic analysis of CTV resistance is needed to avoid the assumption of monogenic inheritance, and transferring Ctv-R from P. trifoliata to sour orange might not avoid the CTV decline of sweet orange trees.Communicated by C. Möllers  相似文献   

3.
A QTL that enhances and broadens Bt insect resistance in soybean   总被引:5,自引:0,他引:5  
Effective strategies are needed to manage insect resistance to Bacillus thuringiensis (Bt) proteins expressed in transgenic crops. To evaluate a multiple resistance gene pyramiding strategy, eight soybean (Glycine max) lines possessing factorial combinations of two quantitative trait loci (QTLs) from plant introduction (PI) 229358 and a synthetic Bt cry1Ac gene were developed using marker-assisted selection with simple sequence repeat markers. Field studies were conducted in 2000 and 2001 to evaluate resistance to corn earworm (Helicoverpa zea) and soybean looper (Pseudoplusia includens), and detached leaf bioassays were used to test antibiosis resistance to Bt-resistant and Bt-susceptible strains of tobacco budworm (TBW; Heliothis virescens). Based on defoliation in the field and larval weight gain on detached leaves, lines carrying a combination of cry1Ac and the PI 229358 allele at a QTL on linkage group M were significantly more resistant to the lepidopteran pests, including the Bt-resistant TBW strain, than were the other lines. This is the first report of a complementary additive effect between a Bt transgene and a plant insect resistance QTL with an uncharacterized mode of action that was introgressed using marker-assisted selection.  相似文献   

4.
The objectives of this study were to understand the genetic basis of morphological variation observed in the genus Citrus and its relatives and to identify genomic regions associated with certain morphological traits using genetic linkage mapping and quantitative trait loci (QTLs) analysis with random amplified polymorphic DNA (RAPD) markers. First, a genetic linkage map was constructed with RAPD markers obtained by screening 98 progeny plants from a {Citrus grandis × [C. paradisi × Poncirus trifoliata]} × {[(C. paradisi × P. trifoliata) × C. reticulata] × [(C. paradisi × Poncirus trifoliata) × C. sinensis]} intergeneric cross. The map contains 69 RAPD markers distributed into nine linkage groups. Then, 17 different morphological traits, including six tree and two leaf characters of 98 progeny plants and six floral and three fruit characters of about half of the same progeny plants were evaluated for 2 years and statistically analyzed for variation. Statistical analysis of individual traits indicated that trunk diameter and growth, tree height, canopy width, tree vigor and growth, leaf length and width, petal and anther numbers, petal length and width, length of pistil and style, fruit length and diameter, and fruit segment number showed normal or close to normal distribution, suggesting that these traits may be inherited quantitatively. Quantitative data from the morphological traits were analyzed to detect markers and putative QTLs associated with these traits using interval mapping method. QTL analysis revealed 18 putative QTLs of LOD > 3.0 associated with 13 of the morphological traits analyzed. The putative QTLs were distributed in several different linkage groups, and QTLs associated with similar traits were mostly mapped to the same LG or similar locations in the linkage group, indicating that the same genomic region is involved in the inheritance of some of the morphological traits.  相似文献   

5.
Eleven RAPD markers linked to a gene region conferring resistance to citrus nematodes in an intergen-eric backcross family were identified. Two sequence- characterized amplified region markers linked to a citrus tristeza virus resistance gene and one selected resistance gene candidate marker were evaluated for their association with citrus nematode resistance. A nematode-susceptible citrus hybrid, LB6-2 [Clementine mandarin (Citrus reticulata)×Hamlin orange (C. sinensis)], was crossed with the citrus nematode-resistant hybrid Swingle citrumelo (C. paradisi×Poncirus trifoliata) to produce 62 hybrids that were reproduced by rooted cuttings. The plants were grown in a greenhouse and inoculated with nematodes isolated from infected field trees. The hybrids segregated widely for this trait in a continuous distribution, suggesting possible polygenic control of the resistance. Bulked segregant analysis was used to identify markers associated with resistance by bulking DNA samples from individuals at the phenotypic distribution extremes. Linkage relationships were established by the inheritance of the markers in the entire population. A single major gene region that contributes to nematode resistance was identified. The resistance was inherited in this backcross family from the grandparent Poncirus trifoliata as a single dominant gene. QTL analysis revealed that 53.6% of the phenotypic variance was explained by this major gene region. The existence of other resistance-associated loci was suggested by the continuous phenotypic distribution and the fact that some moderately susceptible hybrids possessed the resistance-linked markers. The markers may be useful in citrus rootstock breeding programs if it can be demonstrated that they are valid in other genetic backgrounds. Received: 4 May 1999 / Accepted: 21 September 1999  相似文献   

6.
The shoot fly is one of the most destructive insect pests of sorghum at the seedling stage. Deployment of cultivars with improved shoot fly resistance would be facilitated by the use of molecular markers linked to QTL. The objective of this study was to dissect the genetic basis of resistance into QTL, using replicated phenotypic data sets obtained from four test environments, and a 162 microsatellite marker-based linkage map constructed using 168 RILs of the cross 296B (susceptible) × IS18551 (resistant). Considering five component traits and four environments, a total of 29 QTL were detected by multiple QTL mapping (MQM) viz., four each for leaf glossiness and seedling vigor, seven for oviposition, six for deadhearts, two for adaxial trichome density and six for abaxial trichome density. The LOD and R 2 (%) values of QTL ranged from 2.6 to 15.0 and 5.0 to 33%, respectively. For most of the QTL, IS18551 contributed resistance alleles; however, at six QTL, alleles from 296B also contributed to resistance. QTL of the related component traits were co-localized, suggesting pleiotropy or tight linkage of genes. The new morphological marker Trit for trichome type was associated with the major QTL for component traits of resistance. Interestingly, QTL identified in this study correspond to QTL/genes for insect resistance at the syntenic maize genomic regions, suggesting the conservation of insect resistance loci between these crops. For majority of the QTL, possible candidate genes lie within or very near the ascribed confidence intervals in sorghum. Finally, the QTL identified in the study should provide a foundation for marker-assisted selection (MAS) programs for improving shoot fly resistance in sorghum.  相似文献   

7.
Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree.  相似文献   

8.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease‐susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9‐targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1? allele. The promoter of both alleles contains the effector binding element (EBEPthA4), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%–64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2‐5, S2‐6, S2‐12 and S5‐13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2‐6 and S5‐13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9‐mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker‐resistant citrus cultivars.  相似文献   

9.
QTL analysis of citrus tristeza virus-citradia interaction   总被引:2,自引:0,他引:2  
Citrus tristeza virus (CTV) has caused the death of millions of trees grafted on sour orange (Citrus aurantium). However, this rootstock is very well adapted to the Mediterranean, semi-arid conditions. The aim of the present research is to genetically analyze the accumulation of CTV in a progeny derived from the cross between C. aurantium and Poncirus trifoliata, both resistant to CTV isolate T-346. Graft propagation of 104 hybrids was done on healthy sweet orange as a rootstock. Three months later, each rootstock was graft inoculated with two patches of infected tissue (isolate T-346). One, 2, and sometimes, 3 and 4 years after inoculation, hybrids and infected patches were tested for CTV by tissue-blot immuno-assay. Additionally, CTV multiplication was evaluated every year as the optical density of double-antibody sandwich enzyme-linked immuno-sorbent assay reactions. Linkage maps for P. trifoliata based on 63 markers, and for C. aurantium based on 157 markers, were used. Most molecular markers were microsatellites and IRAP (inter-retrotransposon amplified polymorphisms). Some analogues of resistance and expressed sequences were also included for candidate gene analysis.Resistance against CTV was analyzed as a quantitative trait (CTV accumulation) by QTL (quantitative trait loci) analysis to avoid the assumption of monogenic control. Three major resistance QTLs were detected where the P. trifoliata resistance gene, Ctv-R, had been previously located in other progenies. Up to five minor QTLs were detected (Ctv-A 1 to Ctv-A 5 ). A significant epistatic interaction involving Ctv-R 1 and Ctv-A 1 was also found. An analogue of a resistance gene is a candidate for Ctv-A 3 , and two expressed sequences are candidates for Ctv-A 1 and Ctv-A 5 . Single-strand conformational polymorphism analysis of CTV genes QTL P20 and P25 (coat protein) in susceptible hybrids, was carried out to test whether or not any QTL accumulation was a defeated resistance gene. Since the same haplotype of the virus was visualized independently on the CTV titer, differences in the amount of virions are not explained through the selection of CTV genotypes by the host, but through differences among citradias in CTV replication and/or movement.Communicated by C. Möllers  相似文献   

10.
The citrus leafminer (CLM), Phyllocnistis citrella Stainton, is native to southern Asia and regarded as an important pest in nurseries and young or top-worked citrus trees in Florida. Damage to the leaf cuticle increases susceptibility to citrus canker disease and further aids spread by increasing inoculum loads. Biological control agents are known to play an important role in regulating pest populations. We evaluated individual contributions of predation and parasitisation to cohorts of P. citrella by exclusion and by direct observation of leaf mines in the field. Predation, particularly by ants, was the largest single cause of P. citrella mortality, accounting for more than 30% of all deaths by natural enemies, and 60% of all deaths by predators. First and second instars of P. citrella were most subject to ant predation. Ageniaspis citricola was the most important parasitoid of P. citrella and caused 8.2–28.6% mortality compared to 9.6–14.7% from indigenous parasitoids. The total biotic mortality of P. citrella observed in exclusion experiments was 52–85%. These results were in basic agreement with 89% mortality, predominantly by predation, obtained by reconstructing a cohort from observations of recently mined leaves. A partial life table based on these data predicted an innate rate of increase (Ro) of 2.8 and thus an almost 3-fold increase per generation. These results indicate that, while biotic mortality takes considerable toll of P. citrella populations, the predominance of predation suggests that the parasitoid complex on this exotic pest in Florida is depauperate and would likely be improved by additional introductions.  相似文献   

11.
1 The citrus leafminer (CLM) Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) is a serious pest in most citrus‐growing regions of the world. The influence of leaf length, citrus species or variety, leaf colour tone and temperature on CLM oviposition was studied from field observations and laboratory experiments. The spatial distribution of eggs on leaves was also examined. Field data were obtained from 1100 samples collected in eastern Spain for 7 years. 2 Significant differences in oviposition rate were found among citrus species in ‘no choice’ laboratory experiments. This tendency was not apparent in the field due to the confounding effect of such factors as the intensity of new flushes and adult CLM abundance. Leaf colour tone and air temperature in the range studied (18–27°C) had no effect on CLM egg‐laying. 3 The distribution of eggs among leaves was random for population densities lower than four eggs per leaf, but became strongly aggregated above this, when not all eggs could survive and complete development. 4 The CLM developmental stage found on leaves depended on the leaf length, and most of the egg‐laying occurred only on leaves that were 10–25 mm long. These leaves had the highest CLM stages in the field and thus give the best estimate of CLM oviposition.  相似文献   

12.
 Citrus tristeza virus (CTV) causes important economic losses in the citrus industry worldwide. Resistance to CTV is present in Poncirus trifoliata and is known to be controlled by a dominant gene at the Ctr locus. Short-distance movement of CTV around the inoculum, as well as passive movement through the phloem vessels, were studied in segregant plants derived by self-pollination from P. trifoliata var. “Flying Dragon” in order to genetically analyze the mechanism of CTV resistance. Accumulation of CTV in the vicinity of the inoculum and in new flushes was studied by means of a direct tissue-blot immunoassay (DTBIA). CTV is able to passively move with the phloematic flux from inoculated resistant genotypes Ctr-Rr and Ctr-RR up to a susceptible scion cultivar (Ctr-rr). Differences regarding CTV accumulation around the inoculum were found among Ctr-Rr individuals of the progeny. Bulked segregant analysis identified five RAPD markers linked to a locus (Ctm), or a genomic region, involved in short-distance accumulation of CTV but located in a different linkage group from Ctr. This result indicates that Ctr is not the only locus responsible for resistance to CTV in P. trifoliata, and that at least one other gene is involved. Given that citrus is a perennial crop, breeding for durable disease resistance should take into account selection at both the Ctr and Ctm loci. Received : 13 March 1996 / Accepted : 18 April 1997  相似文献   

13.
The soybean aphid (Aphis glycines Matsumura) is the most damaging insect pest of soybean [Glycine max (L.) Merr.] in North America. New soybean aphid biotypes have been evolving quickly and at least three confirmed biotypes have been reported in USA. These biotypes are capable of defeating most known aphid resistant soybean genes indicating the need for identification of new genes. Plant Introduction (PI) 567301B was earlier identified to have antixenosis resistance against biotype 1 and 2 of the soybean aphid. Two hundred and three F7:9 recombinant inbred lines (RILs) developed from a cross of soybean aphid susceptible cultivar Wyandot and resistant PI 567301B were used for mapping aphid resistance genes using the quantitative trait loci (QTL) mapping approach. A subset of 94 RILs and 516 polymorphic SNP makers were used to construct a genome-wide molecular linkage map. Two candidate QTL regions for aphid resistance were identified on this linkage map. Fine mapping of the QTL regions was conducted with SSR markers using all 203 RILs. A major gene on chromosome 13 was mapped near the previously identified Rag2 gene. However, an earlier study revealed that the detached leaves of PI 567301B had no resistance against the soybean aphids while the detached leaves of PI 243540 (source of Rag2) maintained aphid resistance. These results and the earlier finding that PI 243540 showed antibiosis resistance and PI 567301B showed antixenosis type resistance, indicating that the aphid resistances in the two PIs are not controlled by the same gene. Thus, we have mapped a new gene near the Rag2 locus for soybean aphid resistance that should be useful in breeding for new aphid-resistant soybean cultivars. Molecular markers closely linked to this gene are available for marker-assisted breeding. Also, the minor locus found on chromosome 8 represents the first reported soybean aphid-resistant locus on this chromosome.  相似文献   

14.
Stem canker caused by the fungus Leptosphaeria maculans is a major disease of Brassica napus. Quantitative resistance factors appear to be important components for effective and durable control of this pathogen. Quantitative trait loci (QTL) for stem canker resistance have previously been identified in the Darmor variety. However, before these QTL can be used in marker-assisted selection (MAS) to breed resistant varieties, they must be validated in a wide range of genetic backgrounds. We used an association mapping approach to confirm the markers located within the QTL previously identified in Darmor and establish their usefulness in MAS. For this, we characterized the molecular diversity of an oilseed rape collection of 128 lines showing a large spectrum of responses to infection by L. maculans, using 72 pairs of primers for simple sequence repeat and other markers. We used different association mapping models which either do or do not take into account the population structure and/or family relatedness. In all, 61 marker alleles were found to be associated with resistance to stem canker. Some of these markers were associated with previously identified QTL, which confirms their usefulness in MAS. Markers located in regions not harbouring previously identified QTL were also associated with resistance, suggesting that new QTL or allelic variants are present in the collection. All of these markers associated with stem canker resistance will help identify accessions carrying desirable alleles and facilitate QTL introgression.  相似文献   

15.
Lycopersicon peruvianum LA2157 originates from 1650 m above sea level and harbours several beneficial traits for cultivated tomatoes such as cold tolerance, nematode resistance and resistance to bacterial canker (Clavibacter michiganensis ssp. michiganensis). In order to identify quantitative trait loci (QTLs) for bacterial canker resistance, a QTL mapping approach was carried out in an F2 population derived from the interspecific F1 between Lycopersicon esculentum cv Solentos and L. peruvianum LA2157. Three QTLs for resistance mapped to chromosomes 5, 7 and 9 respectively. The resistance loci were additive and co-dominant with the QTL on chromosome 7 explaining the largest part of the variation for resistance in the F2 population. The combination of this QTL with either of the other two QTLs conferred a resistance similar to the level in the resistant parent L. peruvianum. Some RFLP markers flanking this QTL on chromosome 7 were converted into SCAR markers allowing efficient marker-assisted selection of plants with high resistance to bacterial canker. Received: 26 February 1999 / Accepted: 12 March 1999  相似文献   

16.
The development of superior soybean, Glycine max (L.) Merr., cultivars exhibiting resistance to insects has been hindered due to linkage drag, a common phenomenon when introgressing alleles from exotic germplasm. Simple-sequence repeat (SSR) markers were used previously to map soybean insect resistance (SIR) quantitative trait loci (QTLs) in a'Cobb' X PI 229358 population, and subsequently used to create near-isogenic lines (NILs) with SIR QTL i n a 'Benning' genetic background. SIR QTLs were mapped on linkage groups (LGs) M (SIRQTL-M), G (SIRQTL-G), and H (SIRQTL-H). The objectives of this study were to 1) evaluate linkage drag for seed yield by using Benning-derived NILs selected for SIRQTL-M, SIRQTL-H, and SIRQTL-G; 2) assess the amount of PI 229358 genome surrounding the SIR QTL in each Benning NIL; and 3) evaluate the individual effects these three QTLs on antibiosis and antixenosis to corn earworm, Helicoverpa zea (Boddie), and soybean looper, Pseudoplusia includens (Walker). Yield data collected in five environments indicated that a significant yield reduction is associated with SIRQTL-G compared with NILs without SIR QTL. Overall, there was no yield reduction associated with SIRQTL-M or SIRQTL-H. A significant antixenosis and antibiosis effect was detected for SIRQTL-M in insect feeding assays, with no effect detected in antixenosis or antibiosis assays for SIRQTL-G or SIRQTL-H without the presence of PI 229358 alleles at SIRQTL-M. These results support recent findings concerning these loci.  相似文献   

17.
Citrus is the most important tree fruit crop in the world. However, citrus production is affected by both biotic and abiotic stresses, including drought, extreme temperature, salinity, citrus canker, citrus tristeza virus, and Huanglongbing (or citrus greening), among others. These stresses can severely influence growth and development of both rootstocks and/or scions of citrus trees, thus reducing both fruit production and fruit quality. Modern advances in the tools of plant biotechnology and advances in genomics play important roles in understanding how citrus crops can cope with diseases and adverse environmental conditions. Within the last decades, much progress has been made in identifying and cloning of genes involved in resistance to biotic and abiotic stresses as well in genetic transformation of Citrus and its related genera, such as Poncirus trifoliata and Fortunella spp. In this review, we will provide information on advances and insights on genetic transformation protocols as well as availability of characterized genes involved in resistance to both abiotic and biotic stresses. This will be followed with a discussion on perspectives of future developments in this field.  相似文献   

18.
A major quantitative trait locus (QTL) controlling resistance to Pierce’s disease (PD) of grape, caused by the bacterium Xylella fastidiosa (Xf), was identified on a Vitis linkage map and denoted as ‘Pierce’s disease resistance 1’ (PdR1). Placement of the locus was accomplished by evaluating a family of full-sib progeny from a cross of two PD-resistant interspecific hybrids with resistance inherited from Vitis arizonica. Resistance was measured under greenhouse conditions by direct quantification of Xf numbers in stem tissues as well as by evaluation of disease symptoms based on leaf scorch and a cane maturation index (CMI). A large QTL (LOD 17.2) accounting for 72% of the phenotypic variance in bacterial numbers was localized to linkage group 14 of the male parent F8909-17. The approximate 95% confidence interval around the QTL peak extended 5.7 cM when using composite interval mapping. The other disease evaluation methods (leaf scorch and CMI, respectively) placed the resistance QTL to the same region on linkage group 14, although at wider 95% confidence intervals (6.0 and 7.5 cM), lower peak LOD scores (11.9 and 7.7) and accounting for less phenotypic variance (59 and 42%). This is the first report of an Xf resistance QTL mapped in any crop species. The relevance of the markers located in the region spanning the QTL will be discussed, addressing their usefulness for the development of PD-resistant grape cultivars.  相似文献   

19.
Apple, Malus×domestica, is the most important fruit grown within the temperate zonobiome. It is attacked by both fruit‐damaging and leaf‐damaging lepidopteran pest insects, which require regular control such as the carpophagous codling moth, Cydia pomonella, or frequent control such as the phyllophagous apple leaf miner, Lyonetia clerkella. As many environmentally friendly pest control tactics are only effective at low levels of infestation, host plant resistance is a promising future component of integrated pest management systems, but knowledge is still lacking on such genetically based approaches against lepidopteran pests. The aim of the study was to identify molecular markers linked to C. pomonella and L. clerkella resistance or susceptibility in commercial apple as well as markers linked to selected fruit traits. The number of C. pomonella‐infested fruits and the number of L. clerkella mines were quantified as measures of apple resistance or susceptibility to the studied moth species. Herbivore surveys on 160 apple genotypes, representing a segregating F1 cross of the apple cultivars ‘Fiesta’ and ‘Discovery’, were carried out during two consecutive years and at two sites in Switzerland. Broad‐sense heritability was 29.9% (C. pomonella), 18.2% (L. clerkella), 21.9% (fruit number) and 16.6% (fruit diameter). A subsequent analysis identified a quantitative trait locus (QTL) associated to C. pomonella susceptibility on the Discovery linkage group 10. The closest marker to this QTL was the random amplified polymorphic marker Z19‐350. No significant QTL was identified for resistance to L. clerkella. A putative QTL associated to fruit number was identified on Fiesta linkage group 12. The presented QTL associated with C. pomonella susceptibility and the putative QTL linked to fruit number may facilitate marker‐assisted breeding of resistant apple cultivars with cropping traits desirable for optimal fruit production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号