首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Disabled Infectious Single Cycle (DISC) HSV-2 has been cultured in the complimentary cell line CR2 to provide high titre bulk material suitable for the purification of the virus as a live viral vaccine. CR2 cells are cultured on the microcarrier Cytodex-1 at 5 g l-1 in small scale (1 l) and larger scale (15 l) reactors. The cells are infected at an MOI of 0.01 pfu cell-1 and the culture harvested 60–72 h later. The infected cells are removed from the microcarriers by the addition of a hypotonic saline and the virus released by low-pressure disruption techniques. Virus titres achieved are compared to the standard roller bottle process. The resulting material is the starting point for the purification of the DISC-HSV virus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
There is a growing interest in enterobacterial flagellins that may result in a demand to produce flagellin on an industrial scale for possible applications as an adjuvant, immunomodulatory agent or vaccine antigen. Traditionally, small-scale production of flagellin has occurred in the laboratory by flagellar shearing of bacterial surfaces and subsequent ultracentrifugation. The main drawback of this method is the need to use low-agitation cultures to avoid the loss of flagella due to shearing during culture. In the present work, we describe a scalable protocol for the production of flagellin with higher yields than traditional laboratory-scale protocols. The use of cross-flow filtration to concentrate bacterial cultures combines extensive shearing of flagella with a reduction in volume, greatly simplifying downstream processing. This technique also allows the use of highly-agitated culture conditions because any sheared flagella are retained in the bacterial concentrate. Flagella obtained with this procedure showed in vivo and in vitro innate activating capacities similar to those of flagella produced at laboratory scale. This procedure is flexible, allowing an increase in production scale, an enhancement of flagellin yield and no requirement for expensive equipment.  相似文献   

3.
Evidence from clinical and epidemiological studies indicates that women are disproportionately susceptible to sexually transmitted viral infections. To understand the underlying biological basis for this increased susceptibility, more studies are needed to examine the acute events in the female reproductive tract following exposure to viruses during sexual transmission. The epithelial lining of the female reproductive tract is the primary barrier that sexually transmitted viruses, such as HIV-1 and HSV-2 need to infect or traverse, in order to initiate and establish productive infection. We have established an ex-vivo primary culture system to grow genital epithelial cells from upper reproductive tract tissues of women. Using these cultures, we have extensively examined the interactions between epithelial cells of the female genital tract and HSV-2 and HIV-1. In this review, we describe in detail the experimental protocol to grow these cultures, monitor their differentiation and inoculate with HSV-2 and HIV-1. Prospective use of these cultures to re-create the microenvironment in the reproductive tract is discussed.  相似文献   

4.
Current laboratory methods used to passage adherent human pluripotent stem cells (hPSCs) are labor intensive, result in reduced cell viability and are incompatible with larger scale production necessary for many clinical applications. To meet the current demand for hPSCs, we have developed a new non-enzymatic passaging method using sodium citrate. Sodium citrate, formulated as a hypertonic solution, gently and efficiently detaches adherent cultures of hPSCs as small multicellular aggregates with minimal manual intervention. These multicellular aggregates are easily and reproducibly recovered in calcium-containing medium, retain a high post-detachment cell viability of 97%±1% and readily attach to fresh substrates. Together, this significantly reduces the time required to expand hPSCs as high quality adherent cultures. Cells subcultured for 25 passages using this novel sodium citrate passaging solution exhibit characteristic hPSC morphology, high levels (>80%) of pluripotency markers OCT4, SSEA-4, TRA-1-60 andTRA-1-81, a normal G-banded karyotype and the ability to differentiate into cells representing all three germ layers, both in vivo and in vitro.  相似文献   

5.
Editorial note     
Abstract

The histology laboratory can face many challenges when small, often critical, specimens of cultured cells are submitted for specialized immunocytochemical studies or special stains. Although clinical pathology labs often receive cell preparations, these usually contain enough cells so that pellets can be formed by centrifugation, and the pellets directly embedded and sectioned. Research labs, however, often need to submit very small samples of cells for experimental studies. We summarize here a number of techniques that currently are available and methods we have developed and/or adapted and used in our laboratory over the years. We describe the utility of multi-chambered slides for cell culture and histologic studies, multi-well cell culture plates, monolayer cell culture on specialized coated cell wells, cell well inserts, and agarose embedding techniques for small cultures of cells and for cultures that require antigen retrieval or multiple antibody localizations. Traditional double embedding techniques, such as the use of agar, are also cited.  相似文献   

6.
Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.  相似文献   

7.
The interaction of herpes simplex virus type 1 (HSV-1) with murine macrophage cell lines was examined. The cell lines appeared to be moderately permissive for HSV-1 replication, though the yield of the virus was limited compared with that in Vero cells. Furthermore, the murine macrophage cell line SL-1, bearing Ia antigen, was persistently infected with HSV-1 for over one year, and was designated SL-1/KOS. Persistent infection could not be established in an Ia antigen-negative macrophage cell line, SL-4. In the SL-1/KOS culture, there was a small number of infected cells as revealed by infectious center assay. Treatment with monoclonal antibody against HSV-1 cured the persistent infection. Therefore maintenance of the persistent infection is considered to be due to a carrier culture consisting of a minority of infected cells and a majority of uninfected cells. In the SL-1/KOS cultures a low level of interferon (IFN) was found. When a large amount of exogenous recombinant murine IFN-beta (10(5)-10(6) international units/ml) was added to the culture, virus production diminished to undetectable levels. These results suggest that IFN plays an important role in the maintenance of persistent infection. In long-term persistently infected cultures, syncytium formation appeared and the virus from such cultures had a different DNA structure from that of the virus originally used for infection as revealed by restriction endonuclease analysis.  相似文献   

8.
The applicability of a protein-free medium for the production of recombinant human interleukin-2 with baby hamster kidney cells in airlift bioreactors was investigated. For this purpose, a BHK-21 cell line, adapted to grow and produce in protein-free SMIF7 medium without forming spheroids in membrane-aerated bubble-free bioreactors, was used as the producer cell line. First, cultivation of the cells was established at a 20-L scale using an internal loop airlift bioreactor system. During the culturing process the medium formulation was optimized according to the specific requirements associated with cultivation of mammalian cells under protein-free conditions in a bubble-aerated system. The effects of the addition of an antifoam agent on growth, viability, productivity, metabolic rates, and release of lactate dehydrogenase were investigated. Although it was possible to establish cultivation and production at a 20-L scale without the use of antifoaming substances, the addition of 0.002% silicon-oil-based antifoaming reagent improved the cultivation system by completely preventing foam formation. This reduced the release of lactate dehydrogenase activity to the level found in bubble-free aerated stirred tank membrane bioreactors and led to a reduction in generation doubling times by about 5 h (17%). Using the optimized medium formulation, cells were cultivated at a 1000-L scale, resulting in a culture performance comparable to the 20-L airlift bioreactor. For comparison, cultivations with protein-containing SMIF7 medium were carried out at 20- and 1000-L scales. The application of protein supplements did not lead to a significant improvement in the cultivation conditions. The results were also compared with experiments performed in a bubble-free aerated stirred tank membrane bioreactor to evaluate the influence of bubbles on the investigated culture parameters. The data implied a higher metabolic activity of the cells in airlift bioreactors with a 150% higher glucose consumption rate. The results of this study clearly demonstrate the applicability of a protein-free chemically defined medium for the production of recombinant proteins with BHK cells in airlift bioreactors.  相似文献   

9.
Gel‐matrix culture environments provide tissue engineering scaffolds and cues that guide cell differentiation. For many cellular therapy applications such as for the production of islet‐like clusters to treat Type 1 diabetes, the need for large‐scale production can be anticipated. The throughput of the commonly used nozzle‐based devices for cell encapsulation is limited by the rate of droplet formation to ~0.5 L/h. This work describes a novel process for larger‐scale batch immobilization of mammalian cells in alginate‐filled hollow fiber bioreactors (AHFBRs). A methodology was developed whereby (1) alginate obstruction of the intra‐capillary space medium flow was negligible, (2) extra‐capillary alginate gelling was complete and (3) 83 ± 4% of the cells seeded and immobilized were recovered from the bioreactor. Chinese hamster ovary (CHO) cells were used as a model aggregate‐forming cell line that grew from mostly single cells to pancreatic islet‐sized spheroids in 8 days of AHFBR culture. CHO cell growth and metabolic rates in the AHFBR were comparable to small‐scale alginate slab controls. Then, the process was applied successfully to the culture of primary neonatal pancreatic porcine cells, without significant differences in cell viability compared with slab controls. As expected, alginate‐immobilized culture in the AHFBR increased the insulin content of these cells compared with suspension culture. The AHFBR process could be refined by adding matrix components or adapted to other reversible gels and cell types, providing a practical means for gel‐matrix assisted cultures for cellular therapy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

10.
Neural stem cells (NSCs) are primitive cells that are the "parent" cells of all the cells in the central nervous system (CNS). Their discovery in 1992 opened the door to a multitude of potential therapies and treatments to cure neurodegenerative diseases such as Parkinson's disease, multiple sclerosis, and Huntington's disease, which affect millions of people worldwide and cost billions of dollars in health care each year. This study proposes optimal serial passaging protocols so that mammalian neural stem cells can effectively be grown in suspension culture. We examined stationary culture passaging protocols and developed our own optimal procedure. Also examined was the effect of serially cultivating the neural stem cells in suspension culture for an extended period of time. The cells were grown for over 35 days in suspension with an overall multiplication ratio of over 10(7) with no decrease in growth rate, maximum cell density, or viability. The cells also remained karyotypically normal through 25 doublings and retained their ability to be differentiated into all the major cell types of the CNS-neurons, astrocytes, and oligodendrocytes. For the first time, mammalian neural stem cells were grown on a larger scale in suspension culture and maintained their stem cell characteristics. A semicontinuous scheme for large-scale production is also presented.  相似文献   

11.
Natural aggregates of Baby Hamster Kidney cells were grown in stirred vessels operated as repeated-batch cultures during more than 600 hours. Different protocols were applied to passaging different fractions of the initial culture: single cells, large size distributed aggregates and large aggregates. When single cells or aggregates with the same size distribution found in culture are used as inoculum, it is possible to maintain semi-continuous cultures during more than 600 hours while keeping cell growth and viability. These results suggest that aggregate culture in large scale might be feasible, since a small scale culture can easily be used as inoculum for larger vessels without noticeable modification of the aggregate chacteristics. However, when only the large aggregates are used as inoculum, it was shown that much lower cell concentrations are obtained, cell viability in aggregates dropping to less than 60%. Under this selection procedure, aggregates maintain a constant size, larger than under batch experiments, up to approximately 400 hours; after this time, aggregate size increases to almost twice the size expected from batch cultures.  相似文献   

12.
Large-scale propagation of replication-defective adenovirus vectors has not been well studied to date. One of the challenges for efficient propagation at large scale is to overcome the sensitivity of virus infected cells to gas sparging required for oxygenation and CO(2) removal. In our initial experiments, it was observed that productivity of an adenovirus vector was significantly reduced under sparging conditions as compared to nonsparged, i.e., surface-aerated controls in serum-free cultures. Investigations led to the identification of a buffer containing surfactant (Polysorbate-80, PS-80) that was included in the virus seed stock formulation and introduced through virus infection into the culture at a very low concentration as the cause of the reduced virus productivity. This finding was not obvious and trivial, as neither uninfected sparged nor infected nonsparged PER.C6 trade mark cells in serum-free cultures were affected by the buffer at such a low PS-80 concentration of 0.00025% (v/v), which is a common component of serum-free cell culture media. These results strongly suggest that virus-infected cells behave very differently from uninfected cells under sparging conditions. To mitigate the deleterious effects of sparging, the virus seed stock was prepared in the absence of the buffer containing PS-80. At the same time, the concentration of Pluronic-F68 (PF-68) in the serum-free medium was increased to 1 g/L, at which cell growth and metabolism were unaffected, even though this measure alone did not result in virus productivity improvement. Only by implementing the two measures together was virus productivity loss completely eliminated under sparging conditions. After demonstration of the process robustness in 2-L bioreactors, this adenovirus propagation process was successfully scaled up to 250 L in a 300-L bioreactor under the worst-case sparging conditions projected for 10,000-L scale.  相似文献   

13.
Presented is a novel antibody production platform based on the fed-batch culture of recombinant, NS0-derived cell lines. A standardized fed-batch cell culture process was developed for five non-GS NS0 cell lines using enriched and optimized protein-free, cholesterol-free, and chemically defined basal and feed media. The process performed reproducibly and scaled faithfully from the 2-L to the 100-L bioreactor scale achieving a volumetric productivity of > 120 mg/L per day. Fed-batch cultures for all five cell lines exhibited significant lactate consumption when the cells entered the stationary or death phase. Peak and final lactate concentrations were low relative to a previously developed fed-batch process (FBP). Such low lactate production and high lactate consumption rates were unanticipated considering the fed-batch culture basal medium has an unconventionally high initial glucose concentration of 15 g/L, and an overall glucose consumption in excess of 17 g/L. The potential of this process platform was further demonstrated through additional media optimization, which has resulted in a final antibody concentration of 2.64 +/- 0.19 g/L and volumetric productivity of > 200 mg/L per day in a 13-day FBP for one of the five production cell lines. Use of this standardized protein-free, cholesterol-free NS0 FBP platform enables consistency in development time and cost effectiveness for manufacturing of therapeutic antibodies.  相似文献   

14.
The presence of serum in cell culture raises safety problems for the production of biologicals, thus a new serum-free medium (MDSS2) was developed. The evaluation of this medium for the growth of different cell lines (BHK-21 C13, BSR and Vero) has shown that cells grew in this medium similarly to standard serum-containing medium, independently of the culture system used: in static (as monolayer) as well as in agitated systems (in suspension in spinner and perfusion reactors). BHK-21 and BSR cells grew as aggregate cultures and could proliferate in both static and agitated culture systems. Vero cells stayed attached to a substrate and proliferated equally in static and in agitated microcarrier-culture systems. The cell densities obtained with BHK-21 cells depended only on the culture system used. They ranged from 2–3×106 to 6–12×106 cells per ml for static batch and perfusion reactor cultures respectively. The cell concentration was 3 to 6 times higher than in classical cultures performed in serum-containing medium. The cell densities obtained with Vero cells were indistinguishable from those obtained in serum-containing medium, whatever the cell culture system used. These cell lines have been used for the production of rabies virus. With respect to BHK-21 and BSR, similar production rates of rabies glycoprotein have been found as in the standard roller bottle process. The production of rabies virus and of viral glycoprotein by Vero cells cultivated in serum-free medium was augmented 1.5-fold and 2.5-fold, respectively, when compared to serum-containing medium.A recombinant BHK-21 cell line, producing human IL-2, can also proliferate in MDSS2, after addition of insulin. The specific IL-2 production rate was augmented 3–4 fold in comparison to serum-containing medium.For the cells tested, the MDSS2 serum-free medium is a good growth and production medium. Its use for cultivating other cell lines and/or for the production of other biologicals is discussed.  相似文献   

15.
Transient expression of recombinant proteins in mammalian cell culture in a 100-L scale requires a large quantity of plasmid that is very labour intensive to achieve with shake flask cultures and commercially available plasmid purification kits. In this paper we describe a process for plasmid production in 100-mg scale. The fermentation is carried out in a 4-L fed-batch culture with a minimal medium. The detection of the end of batch and triggering the exponential (0.1 h(-1)) feed profile was unattended and controlled by Multi-fermenter Control System. A restricted specific growth rate in fed-batch culture increased the specific plasmid yield compared to batch cultures with minimal and rich media. This together with high biomass concentration (68-107 g L(-1) wet weight) achieves high volumetric yields of plasmid (95-277 mg L(-1) depending on the construct). The purification process consisted of alkaline lysis, lysate clarification and ultrafiltration, two-phase extraction with Triton X-114 for endotoxin removal, anion-exchange chromatography as a polishing step, ultrafiltration and sterile filtration. Both fermentation and purification processes were used without optimisation for production of four plasmids yielding from 39 to 163 mg of plasmids with endotoxin content of 2.5 EU mg(-1) or less.  相似文献   

16.
During the last decade, recombinant AAVs have become of increasing interest for gene therapy. Clinical trials have been conducted following promising in vivo evaluations, thus leading laboratories to adapt their production systems for larger and higher quality demands. Classical transfection protocols seem difficult and cumbersome to adapt to a bioreactor scale. The use of stable producer cells appears as an attractive alternative, as this system requires only a single infection step to induce rAAV production. Furthermore, the switch to a serum-free medium is an interesting strategy to increase the biosafety level to satisfy clinical grade requirements for gene therapy products. Here, we have combined both approaches and evaluated different rAAV producer clones in a serum-free medium. We first evaluated the cell growth in a serum-free medium and then did a partial optimisation of the medium composition to obtain vector yields as close as possible to the yields obtained in a classical serum containing medium. Different helper viruses, multiplicity of infection, times of infection and harvest have been compared in small scale cultures in order to determine the optimal settings which were then transferred and evaluated in suspension cultures in spinner flasks. The yields obtained in this system were similar to or at most 2 times lower than those obtained in a serum-containing medium. The scale-up of such a production system as well as the use of high cell density perfusion culture systems will probably lead to considerably higher yields than those obtained in a classical process.  相似文献   

17.
This study aims to check if the protein content of a cyanobacterial culture is a reliable biomass parameter for cyanobacteria in laboratory experiments, and therefore can be proposed as a standard biomass parameter in culture work to facilitate comparison of results from different studies. For this purpose, the cyanobacteria Microcystis aeruginosa PCC 7806 and Planktothrix agardhii PT2 were grown in 10-L batch cultures with O2 medium and under iron-, nitrate- or phosphate-limited conditions. A linear correlation was found between protein and biovolume in all cultures during exponential growth. We conclude that protein is a suitable biomass parameter for cyanobacteria in laboratory experiments during balanced growth.  相似文献   

18.
Recent developments in gene therapy using adenoviral (Ad) vectors have fueled renewed interest in the 293 human embryonic kidney cell line traditionally used to produce these vectors. Low-glutamine fed-batch cultures of serum-free, suspension cells in a 5-L bioreactor were conducted. Our aim was to tighten the control on glutamine metabolism and hence reduce ammonia and lactate accumulation. Online direct measurement of glutamine was effected via a continuous cell-exclusion system that allows for aseptic, cell-free sampling of the culture broth. A feedback control algorithm was used to maintain the glutamine concentration at a level as low as 0.1 mM with a concentrated glucose-free feed medium. This was tested in two media: a commercial formulation (SFM II) and a chemically defined DMEM/F12 formulation. The fed-batch and batch cultures were started at the same glucose concentration, and it was not controlled at any point in the fed-batch cultures. In all cases, fed-batch cultures with double the cell density and extended viable culture time compared to the batch cultures were achieved. An infection study on the high density fed-batch culture using adenovirus-green fluorescent protein (Ad-GFP) construct was also done to ascertain the production capacity of the culture. Virus titers from the infected fed-batch culture showed that there is an approximately 10-fold improvement over a batch infection culture. The results have shown that the control of glutamine at low levels in cultures is sufficient to yield significant improvements in both cell densities and viral production. The applicability of this fed-batch system to cultures in different media and also infected cultures suggests its potential for application to generic mammalian cell cultures.  相似文献   

19.
Plants have been established as an useful production system for commercially relevant proteins. Plant cell cultures show certain advantages compared to field-grown plants. However, one critical drawback for the long-term use of recombinant plant cell cultures is the instability of cell cultures concerning genetic background and productivity when maintained by subculturing. The ability to store recombinant cell lines stably by cryopreservation allows to maintain an efficient and stable production system. In this work, we describe the development of a cryopreservation protocol for a transgenic BY-2 cell culture expressing human serum albumin. In 1.75-L stirred-tank bioreactors growth and production kinetics of the transgenic cell line were compared after cryopreservation to the hitherto performed maintenance by subculturing. Growth and productivity of the cryopreserved cell culture remained stable after freezing for one week. Here, we show that we developed an efficient method which allows the storage of transgenic plant cell cultures, an important requirement for industrial processes.  相似文献   

20.
In the past decade, H? production using the green microalga Chlamydomonas reinhardtii has been extensively studied under laboratory-scale photobioreactors, while information on outdoor cultures is still lacking. In this paper, the results of experiments conducted with sulfur-deprived cultures of C. reinhardtii carried out in a 50-L horizontal tubular photobioreactor are presented. Hydrogen production experiments were carried out under both artificial and direct solar light. In both cases, the H? output attained was 18-20% of what obtained in the laboratory. However, no significant changes in the H? production were observed when cells grown outdoors were tested under laboratory conditions. Chlorophyll fluorescence measurements showed that outdoor cultures were subjected to strong photo-inhibition, due to the combination of high solar light intensity and sulfur-deprivation. Indeed, H? production was only achieved outdoors when cultures were previously acclimated to sunlight, a condition that caused a number of physiological changes, namely: (i) a decrease in the chlorophyll content per unit of dry weight; (ii) an increase in the photosynthesis and respiration rates, and (iii) a higher induction of the xanthophyll cycle pigments as compared to non-acclimated cultures. It was concluded that the reduced H? output achieved in the 50-L photobioreactor was due to the different illumination pattern to which the cultures were exposed (one-sided vs. two-sided illumination provided in the laboratory), as well as to the great difference in the mixing times (60 min vs. 15.5s achieved in the lab-scale photobioreactor). To the very best of our knowledge this is the first time that H? production with green algae has been achieved by means of solar light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号