首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Evoked potentials were recorded in the caudate nucleus of adult rabbits and young rabbits aged 2–30 days in response to stimulation of the ipsilateral motor cortex. The response of the caudate nucleus in the adult rabbit consisted of a positive-negative complex with latent period of 3–5 msec. Maximal amplitude of the response was observed in the dorsorostral region of the nucleus. As the recording electrode was inserted deeper, the amplitude of the response gradually decreased but without reversal of its polarity. Responses of the caudate nucleus to stimulation of the motor cortex were recorded as early as on the 3rd day after birth. These responses were indistinguishable in configuration from responses of the nucleus of adult rabbits. Their latent period was about 10 msec. Between the 16th and 20th day after birth the latent period of the response decreased considerably — from 9 to 5 msec, and by the 30th day of life it had reached its definitive value. With age the amplitude of the response increased but the threshold of stimulation decreased, The results indicate early functional maturation of connections of the motor cortex with the caudate nucleus and they agree with the results of morphological investigations of the structural development of the afferent systems of this nucleus.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 284–289, May–June, 1982.  相似文献   

2.
Discharges of 184 motor units of the sartorius muscle functioning during cold tremor were investigated in acute experiments on anesthetized cats. Units whose discharges correlated with respiration cycles and units functionally independent of the rhythm of respiration were discovered. Discharges of both types of motor units possessed the same mean frequency (4–12 spikes/sec) and the same low variability of interspike intervals. Additional temperature stimulation of the vascular temperature receptors and changes in the frequency and depth of the respiratory excursions during cold tremor evoked identical responses in the two types of units. It is concluded that both types of motor units have similar thresholds and are of the slow, phasic type.O. V. Kuusinen State University, Petrozavodsk. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 355–361, July–August, 1979.  相似文献   

3.
Spontaneous and evoked unit activity in response to repeated application of clicks at a frequency of 0.3–2.0 Hz in the caudate nucleus was studied by an extracellular recording technique in chronic experiments on cats. Four types of spontaneous unit activity in the caudate nucleus were distinguished. Altogether 44% of neurons tested responded by changes in spontaneous activity to clicks. Five types of responses of caudate neurons to clicks were discovered: phasic excitation, phasic inhibition, tonic activation, tonic inhibition, and mixed tonic responses; the commonest type was tonic activation. During prolonged stimulation by clicks extinction of the phasic responses was not observed. Complete or partial extinction of tonic responses in the course of frequent repetition of stimulation was observed in 33% of responding neurons. The question of possible convergence of specific and nonspecific influences on caudate neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 28–35, January–February, 1980.  相似文献   

4.
Sources of direct and indirect afferent connections of the caudate nucleus were investigated in cats by the retrograde axonal transport of horseradish peroxidase method. Different parts of the neocortex were shown to form different types of projections to the caudate nucleus; the sources of these projections have a laminar organization. Connections of the globus pallidus with the caudate nucleus, not previously described, were found. Among the sources of the thalamo-caudate projections, besides nuclei of the intralaminar complex, an important place is occupied by the ventral anterior and mediodorsal nuclei. After injection of horseradish peroxidase into the caudate nucleus, retrograde axonal transport of the enzyme was observed in the caudal direction, as far as cells of the locus coeruleus. ON the basis of these results a general scheme of afferent projections to the caudate nucleus is drawn up, including its connections with the spinal cord mediated by the thalamic nuclei and mesencephalic reticular formation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 146–154, March–April, 1980.  相似文献   

5.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

6.
Unitary responses of the caudate nucleus to stimulation of various parts of it were investigated by extracellular recording. Latent periods of response discharges varied from 3.5 to 40 msec. Most neurons were excited by stimulation of the most rostral part of the head of the caudate nucleus. Irrespective of the site of stimulation, in most cases responses consisted of initial excitation in the form of one or, less frequently, two discharges followed by a period of depression of spontaneous activity. Recovery of activity took place gradually, without postinhibitory facilitation. No afterdischarges or periodic repetitions of spikes were observed after the initial response. Repetitive stimulation of the caudate nucleus showed that the neurons of this nucleus reproduce frequencies of stimulation badly above 30/sec, and under these circumstances in many cases they continued to discharge on average at a frequency of 5–15/sec. The results are examined from the standpoint of participation of the caudate nucleus in the formation of spindle activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 497–506, September–October, 1976.  相似文献   

7.
The question of the sensory function of neurons of nonspecific structures in the higher levels of the brian is examined. The complexity of this problem and the debatable nature of some of its aspects are noted. Justification is given for the choice of test object — the neostriatum (caudate nucleus) as a nonspecific subcortical structure. The results of experiments on actively alert cats are described. Extracellular responses of neurons to various types of photic stimulation were compared. Predominantly activation of neurons by local photic stimuli was found, especially with a particular spatial distribution of the illuminated areas of the visual field, compared with diffuse light. Difficulties of interpretation of the results because of fluctuations of spontaneous activity and of the recorded responses observed during repeated application of stimuli are discussed. In conclusion, an attempt is made to establish a correlation between the sensory properties of neurons in the neostriatum with the effector motor function of this structure.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 384–394, May–June, 1984.  相似文献   

8.
Neuronal response in the caudate nucleus to presentation of a wide variety of visual and other sensory stimuli was investigated in waking cats. Pronounced discrepancies in background activity of unknown origin as well as differing neuronal activity level were noted in adjacent sections of the nucleus. Of the neurons from which readings of response to sensory stimulation could be made, some reacted to presentation of exclusively visual and others to tactile stimuli; a third group responded to a combination of visual and somatic stimulation only. Response could only be produced in cells of all types by a high level of activity in the animal. Visual stimuli attracting the animal's interest proved to be the most effective form of stimulation. Ipsi- and contralateral sides of the animal's body were both represented in the caudate nucleus of each hemisphere. Neuronal response in the caudate nucleus may be compared with that produced by application of similar stimuli in cells belonging to different cortical areas.Institute for Research on Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 3–10, January–February, 1990.  相似文献   

9.
Activity of flexor and extensor γ- and α-motoneurons during cold tremor was investigated in anesthetized cats. General hypothermia and local cold stimulation or electrical stimulation of the dorsomedial region of the posterior hypothalamus were shown to induce primary activation of flexor and simultaneous inhibition of activity of extensor γ-motoneurons, followed by activation of flexor α-motoneurons (extensor muscles are not involved in temperature regulating activity). Electrical stimulation of the medial preoptic region during cold tremor led to primary inhibition of flexor α-motoneuron activity. It is concluded from these results that the development of temperature-regulating muscular activity is preceded by activation of γ-motoneurons. The use of cold tremor induced in anesthetized cats as a natural model with which to study the role of the fusimotor system in regulation of function of motor nuclei during postural activity is argued.  相似文献   

10.
Influence of systemic injection of some dopaminergic drugs on conditioned postural rearrangement prior to instrumental movement realization and on other motor components of instrumental reaction as well as on the performance of the instrumental task itself--was studied in chronic experiments in 5 dogs on a model of instrumental defensive reflexes connected with maintenance of a certain posture. Drugs were used influencing the nigrostriate dopaminergic system, i.e. dopamine agonist L-DOPA and haloperidol blocking dopamine striate receptors. All the motor components of the instrumental reaction and first of all conditioned postural rearrangement were modified by systemic haloperidol injection. Initial components of the postural rearrangement were modified to the greatest extent, in particular the period of preparation of the animal to the posture change increased. On the contrary, the latency of initiation of postural rearrangement was sharply shortened by systemic injection of L-DOPA. On the other hand, the main component of the postural change, i.e. redistribution of body mass among the bearing limbs (the values of which significantly increased after preliminary stimulation of the head of the caudate nucleus) changed insignificantly during modulation of the striatum dopamine level.  相似文献   

11.
During acute experiments on awake cats the response of 98 neurons belonging to the head and tail of the caudate nucleus to direct electrical stimulation of the optic tract and presentation of photic stimuli was investigated using extracellular recording techniques. Of the test neurons 34.6% responded to stimulation of the optic tract and 36.2% to optic stimulation. Long latency (over 40 msec for the optic tract and over 80 msec for visual stimulation) excitatory responses prevailed in both cases. A small number of cells responded to optic tract stimulation with short latencies of 5–14 msec. Both types of stimulation were presented during investigations of 58 units of which eight were found to respond to both stimuli. The latter varied in their reaction to different stimuli and their response pattern. Findings are discussed in relation to the possible pathways by which visual information reaches the cortical structure under study.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 476–485, July–August, 1986.  相似文献   

12.
Effects of stimulation of the claustrum and caudate nucleus in the neocortex and various deep brain structures were studied in acute experiments on unanesthetized cats immobilized with tubocurarine. A rhythmic after discharge appeared in neocortical areas 4–7 and 18 (according to Reinoso-Suarez' atlas), and also in the caudate nucleus and various parts of the thalamus. A similar discharge also was observed in the claustrum itself. Diencephalic brain section at the level of the ventral anterior nucleus weakened but did not completely abolish the cortical rhythmic after-discharge in the anterior regions of the neocortex evoked by stimulation of the claustrum. This discharge was completely blocked after sagittal brain section between the claustrum and the rest of the thalamus.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 15, No. 2, pp. 121–127, March–April, 1983.  相似文献   

13.
During chronic experiments on unanesthetized cats neuronal response in the caudate nucleus to the presentation of local photic stimuli and electrical stimulation of the specific (field 17) and the association (Clare-Bishop) areas were compared. Stimulation of the Clare-Bishop area proved more effective than stimulating field 17 for neurons of the caudate nucleus; a response was produced in 47% of test neurons in comparison with 8% of units only in the specific area. Lower average values were observed for latency of neuronal response to stimulation of the Clare-Bishop area. An insignificant number of caudate nucleus neurons were activated as a result of stimulation of both cortical areas. A comparison between the response of one set of neurons to electrical cortical and visual stimulation showed that cells responding to visual stimulation were more highly activated by stimulating the Clare-Bishop area than by stimulation of field 17. This type of neuron predominated in the caudate nucleus. A discussion follows of the possible involvement of the Clare-Bishop area in shaping neuronal response to visual stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 619–627, September–October, 1985.  相似文献   

14.
Responses of 137 neurons of the rostral pole of the reticular and anterior ventral thalamic nuclei to electrical stimulation of the ventrolateral nucleus and motor cortex were studied in 17 cats immobilized with D-tubocurarine. The number of neurons responding antidromically to stimulation of the ventrolateral nucleus was 10.5% of all cells tested (latent period of response 0.7–3.0 msec), whereas to stimulation of the motor cortex it was 11.0% (latent period of response 0.4–4.0 msec). Neurons with a dividing axon, one branch of which terminated in the thalamic ventrolateral nuclei, the other in the motor cortex, were found. Orthodromic excitation was observed in 78.9% of neurons tested during stimulation of the ventrolateral nucleus and in 52.5% of neurons during stimulation of the motor cortex. Altogether 55.6% of cells responded to stimulation of the ventrolateral nucleus with a discharge of 3 to 20 action potentials with a frequency of 130–350 Hz. Similar discharges in response to stimulation of the motor cortex were observed in 30.5% of neurons tested. An inhibitory response was recorded in only 6.8% of cells. Convergence of influences from the thalamic ventrolateral nucleus and motor cortex was observed in 55.7% of neurons. The corticofugal influence of the motor cortex on responses arising in these cells to testing stimulation of the ventrolateral nucleus could be either inhibitory or facilitatory.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 460–468, September–October, 1978.  相似文献   

15.
Electrical activity of the sensomotor and visual areas of the neocortex during stimulation of the caudate nucleus was recorded in young rabbits aged 3–60 days and in adults. Single stimulation of the caudate nucleus was found to cause the appearance of characteristic bursts of spindle-like rhythmic activity ("caudate spindles"), described previously in cats and monkeys, in the adult rabbit cortex. The latent period of the caudate spindle was about 200 msec, its duration 1–3 sec, and the frequency of its oscillations of the order of 12 Hz. Caudate spindles were most marked in the sensomotor cortex of the ipsilateral hemisphere. In rabbits under 10 days old caudate spindles were not found even if the intensity of stimulation was increased many times. Starting from the age of 15 days bursts of rhythmic activity resembling caudate spindles, but with lower frequency (about 8 Hz), longer latent period (up to 350 msec), and also with a higher threshold, appeared in the sensomotor cortex. The definitive type of caudate spindles was established toward the end of the first month of postnatal life, corresponding to the time of formation and complication of conditioned-reflex activity in developing animals.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 11–15, March, 1985.  相似文献   

16.
The response of caudate nucleus neurons to acoustic stimulation (a click at 0.5 Hz) was investigated during chronic experimentation in cats using intracellular techniques and reversible blockage of the thalamic centrum medianum produced by anode polarization. Having analyzed poststimulus histograms it was found that the response of phasic activation to an acoustic signal decreased, and disappeared in 52% of neurons. A reduction in the level of spontaneous activity was also observed in neurons of the caudate nucleus. The significance of a direct pathway from the thalamic centrum medianum to the caudate nucleus is discussed from the viewpoint of acoustic signal transmission to caudate nucleus neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 92–99, January–February, 1986.  相似文献   

17.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

18.
Spectral signs of genetically determined predisposition to seizure characteristic of Krushinskii-Molodkina (KM) strain rats were found when studying summated cerebral potentials, namely increased power of low (1–3 Hz) frequencies in spectra of motor and visual cortex potentials together with an abrupt increase and a reduction respectively in the power of hippocampal and caudate nucleus potentials. Comparative spectra of summated electrical activity within neuronal networks [10] and those of experimentally obtained potentials as determined by modeled parameters simulating neuronal networks were found (an inverse problem of modeling). It was found that spectral signs of predisposition to seizure could reflect changes in the physiological properties of neuronal networks belonging to the rat brain structures investigated. It might be suggested on the basis of the calculations performed that genetic predisposition to seizure in KM strain rats is determined by attenuation of the inhibitory function of the caudate nucleus and by heightened excitability (reactivity) in neurons of the paleo- and neocortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 184–193, March–April, 1990.  相似文献   

19.
Spontaneous unit activity recorded extracellularly from the caudate nucleus in acute experiments on cats was analyzed. A graph of the sliding mean frequency, an interspike interval histogram, correlogram, intensity function, and histogram of correlation between adjacent intervals were plotted for the spontaneous activity of each neuron. The spontaneous activity of neurons of the caudate nucleus showed considerable variability in time and its mean frequency varied for different neurons from 0.5 to 20 spikes/sec. Depending on the temporal pattern of the spikes and also on the statistical indices, spontaneous unit activity in the caudate nucleus was conventionally divided into two types: single and grouped. A switch from one type of activity to the other was observed for the same neuron. On the basis of the data as a whole it is impossible to regard the spontaneous unit activity of the caudate nucleus as a simple random (Poissonian) spike train.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 369–376, July–August, 1977.  相似文献   

20.
Vestibular nucleus neurons projecting to the cat bulbar lateral reticular nucleus were revealed using horseradish peroxidase axonal transport techniques. Neurons giving rise to such projections — relatively few in number — were confined to homolateral locations and nearly all occurred within Deiter's nucleus. Large as well as small and medium-sized neurons of the vestibular nucleus projected to the lateral reticular nucleus. The part played by the vestibuloreticular projections under review in the control of motor activity is discussed.Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 147–152, March–April, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号