首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The lack of capacity in laboratory systems is a major barrier to achieving the aims of the London Declaration (2012) on neglected tropical diseases (NTDs). To counter this, capacity strengthening initiatives have been carried out in NTD laboratories worldwide. Many of these initiatives focus on individuals'' skills or institutional processes and structures ignoring the crucial interactions between the laboratory and the wider national and international context. Furthermore, rigorous methods to assess these initiatives once they have been implemented are scarce. To address these gaps we developed a set of assessment and monitoring tools that can be used to determine the capacities required and achieved by laboratory systems at the individual, organizational, and national/international levels to support the control of NTDs.

Methodology and principal findings

We developed a set of qualitative and quantitative assessment and monitoring tools based on published evidence on optimal laboratory capacity. We implemented the tools with laboratory managers in Ghana, Malawi, Kenya, and Sri Lanka. Using the tools enabled us to identify strengths and gaps in the laboratory systems from the following perspectives: laboratory quality benchmarked against ISO 15189 standards, the potential for the laboratories to provide support to national and regional NTD control programmes, and the laboratory''s position within relevant national and international networks and collaborations.

Conclusion

We have developed a set of mixed methods assessment and monitoring tools based on evidence derived from the components needed to strengthen the capacity of laboratory systems to control NTDs. Our tools help to systematically assess and monitor individual, organizational, and wider system level capacity of laboratory systems for NTD control and can be applied in different country contexts.  相似文献   

2.

Background

Neglected Tropical Diseases (NTDs) not only cause health and life expectancy loss, but can also lead to economic consequences including reduced ability to work. This article describes a systematic literature review of the effect on the economic productivity of individuals affected by one of the five worldwide most prevalent NTDs: lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths (ascariasis, trichuriasis, and hookworm infection) and trachoma. These diseases are eligible to preventive chemotherapy (PCT).

Methodology/Principal Findings

Eleven bibliographic databases were searched using different names of all NTDs and various keywords relating to productivity. Additional references were identified through reference lists from relevant papers. Of the 5316 unique publications found in the database searches, thirteen papers were identified for lymphatic filariasis, ten for onchocerciasis, eleven for schistosomiasis, six for soil-transmitted helminths and three for trachoma. Besides the scarcity in publications reporting the degree of productivity loss, this review revealed large variation in the estimated productivity loss related to these NTDs.

Conclusions

It is clear that productivity is affected by NTDs, although the actual impact depends on the type and severity of the NTD as well as on the context where the disease occurs. The largest impact on productivity loss of individuals affected by one of these diseases seems to be due to blindness from onchocerciasis and severe schistosomiasis manifestations; productivity loss due to trachoma-related blindness has never been studied directly. However, productivity loss at an individual level might differ from productivity loss at a population level because of differences in the prevalence of NTDs. Variation in estimated productivity loss between and within diseases is caused by differences in research methods and setting. Publications should provide enough information to enable readers to assess the quality and relevance of the study for their purposes.  相似文献   

3.

Background

This study designed and applied accessible yet systematic methods to generate baseline information about the patterns and structure of Canada''s neglected tropical disease (NTD) research network; a network that, until recently, was formed and functioned on the periphery of strategic Canadian research funding.

Methodology

Multiple methods were used to conduct this study, including: (1) a systematic bibliometric procedure to capture archival NTD publications and co-authorship data; (2) a country-level “core-periphery” network analysis to measure and map the structure of Canada''s NTD co-authorship network including its size, density, cliques, and centralization; and (3) a statistical analysis to test the correlation between the position of countries in Canada''s NTD network (“k-core measure”) and the quantity and quality of research produced.

Principal Findings

Over the past sixty years (1950–2010), Canadian researchers have contributed to 1,079 NTD publications, specializing in Leishmania, African sleeping sickness, and leprosy. Of this work, 70% of all first authors and co-authors (n = 4,145) have been Canadian. Since the 1990s, however, a network of international co-authorship activity has been emerging, with representation of researchers from 62 different countries; largely researchers from OECD countries (e.g. United States and United Kingdom) and some non-OECD countries (e.g. Brazil and Iran). Canada has a core-periphery NTD international research structure, with a densely connected group of OECD countries and some African nations, such as Uganda and Kenya. Sitting predominantly on the periphery of this research network is a cluster of 16 non-OECD nations that fall within the lowest GDP percentile of the network.

Conclusion/Significance

The publication specialties, composition, and position of NTD researchers within Canada''s NTD country network provide evidence that while Canadian researchers currently remain the overall gatekeepers of the NTD research they generate; there is opportunity to leverage existing research collaborations and help advance regions and NTD areas that are currently under-developed.  相似文献   

4.
5.
6.

Introduction

Health research is one mechanism to improve population-level health and should generally match the health needs of populations. However, there have been limited data to assess the trends in national-level cardiovascular research output, even as cardiovascular disease [CVD] has become the leading cause of morbidity and mortality worldwide.

Materials and Methods

We performed a time trends analysis of cardiovascular research publications (1999–2008) downloaded from Web of Knowledge using a iteratively-tested cardiovascular bibliometric filter with >90% precision and recall. We evaluated cardiovascular research publications, five-year running actual citation indices [ACIs], and degree of international collaboration measured through the ratio of the fractional count of addresses from one country against all addresses for each publication.

Results and Discussion

Global cardiovascular publication volume increased from 40 661 publications in 1999 to 55 284 publications in 2008, which represents a 36% increase. The proportion of cardiovascular publications from high-income, Organization for Economic Cooperation and Development [OECD] countries declined from 93% to 84% of the total share over the study period. High-income, OECD countries generally had higher fractional counts, which suggest less international collaboration, than lower income countries from 1999–2008. There was an inverse relationship between cardiovascular publications and age-standardized CVD morbidity and mortality rates, but a direct, curvilinear relationship between cardiovascular publications and Human Development Index from 1999–2008.

Conclusions

Cardiovascular health research output has increased substantially in the past decade, with a greater share of citations being published from low- and middle-income countries. However, low- and middle-income countries with the higher burdens of cardiovascular disease continue to have lower research output than high-income countries, and thus require targeted research investments to improve cardiovascular health.  相似文献   

7.

Purpose of Review

Here, we discuss the current needs and priorities for mycetoma control and prevention, highlight lessons learned from leprosy and podoconiosis, and motivate an urgent need to accelerate progress toward reducing the burden of mycetoma in endemic areas.

Recent Findings

In 2015, the World Health Assembly (WHA) added mycetoma, a progressively debilitating disease caused by fungi and bacteria, to the World Health Organization (WHO) list of priority neglected tropical diseases (NTDs). Designation of other diseases as NTDs has raised awareness, enabled global partnerships, and advanced the capacity to combat disease through integrated programming. Although key mycetoma etiologic agents have been identified, many questions remain and mycetoma may similarly benefit from NTD designation.

Summary

In collaboration with experts at WHO and elsewhere, we formed a global mycetoma working group to connect partners from a variety of sectors and specialties. We envision that this group will evolve into a formalized partnership that can prioritize strategic planning, advocacy, and research needs, identify funding sources, and coordinate activities related to mycetoma and other NTDs affecting the skin. The experiences gained from other NTDs can help to guide the global mycetoma working group’s activities to better address the goals set forth in the WHA resolution.
  相似文献   

8.

Background

Nigeria carries the highest burden and diversity of neglected tropical diseases (NTDs) in sub-Saharan Africa and is preparing to scale up its efforts to control/eliminate these diseases. To achieve this it will require a range of internal technical support and expertise for mapping, monitoring and evaluating, operational research and documenting its success. In order to begin to evaluate this potential in Nigeria, this study collated and analysed information for lymphatic filariasis (LF), onchocerciasis, schistosomiasis and soil-transmitted helminths (STH), which are currently being targeted with preventive chemotherapy through mass drug administration (MDA).

Methodology/Principal Findings

Information from 299 scientific articles published on the selected NTDs in 179 journals between January 2008 and September 2013 was extracted and systematically compiled into a geo-referenced database for analysis and mapping. The highest number of articles was from the southern geo-political zones of the country. The majority of articles focused on one specific disease, and schistosomiasis and STH were found to have the highest and most wide ranging research output. The main type of study was parasitological, and the least was biotechnological. Nigerian authors were mostly affiliated with universities, and there was a wide range of international co-authors from Africa and other regions, especially the USA and UK. The majority of articles were published in journals with no known impact factor.

Conclusions/Significance

The extensive database and series of maps on the research capacity within Nigeria produced in this study highlights the current potential that exists, and needs to be fully maximized for the control/elimination of NTDs in the country. This study provides an important model approach that can be applied to other low and middle income countries where NTDs are endemic, and NTD programmes require support from the expertise within their own country, as well as internationally, to help raise their profile and importance.  相似文献   

9.

Background

Mapping the international landscape of clinical trials may inform global health research governance, but no large-scale data are available. Industry or non-industry sponsorship may have a major influence in this mapping. We aimed to map the global landscape of industry- and non-industry–sponsored clinical trials and its evolution over time.

Methods

We analyzed clinical trials initiated between 2006 and 2013 and registered in the WHO International Clinical Trials Registry Platform (ICTRP). We mapped single-country and international trials by World Bank''s income groups and by sponsorship (industry- vs. non- industry), including its evolution over time from 2006 to 2012. We identified clusters of countries that collaborated significantly more than expected in industry- and non-industry–sponsored international trials.

Results

119,679 clinical trials conducted in 177 countries were analysed. The median number of trials per million inhabitants in high-income countries was 100 times that in low-income countries (116.0 vs. 1.1). Industry sponsors were involved in three times more trials per million inhabitants than non-industry sponsors in high-income countries (75.0 vs. 24.5) and in ten times fewer trials in low- income countries (0.08 vs. 1.08). Among industry- and non-industry–sponsored trials, 30.3% and 3.2% were international, respectively. In the industry-sponsored network of collaboration, Eastern European and South American countries collaborated more than expected; in the non-industry–sponsored network, collaboration among Scandinavian countries was overrepresented. Industry-sponsored international trials became more inter-continental with time between 2006 and 2012 (from 54.8% to 67.3%) as compared with non-industry–sponsored trials (from 42.4% to 37.2%).

Conclusions

Based on trials registered in the WHO ICTRP we documented a substantial gap between the globalization of industry- and non-industry–sponsored clinical research. Only 3% of academic trials but 30% of industry trials are international. The latter appeared to be conducted in preferentially selected countries.  相似文献   

10.

Background

Breast and cervical cancers have emerged as major global health challenges and disproportionately lead to excess morbidity and mortality in low- and middle-income countries (LMICs) when compared to high-income countries. The objective of this paper was to highlight key findings, recommendations, and gaps in research and practice identified through a scoping study of recent reviews in breast and cervical cancer in LMICs.

Methods

We conducted a scoping study based on the six-stage framework of Arskey and O’Malley. We searched PubMed, Cochrane Reviews, and CINAHL with the following inclusion criteria: 1) published between 2005-February 2015, 2) focused on breast or cervical cancer 3) focused on LMIC, 4) review article, and 5) published in English.

Results

Through our systematic search, 63 out of the 94 identified cervical cancer reviews met our selection criteria and 36 of the 54 in breast cancer. Cervical cancer reviews were more likely to focus upon prevention and screening, while breast cancer reviews were more likely to focus upon treatment and survivorship. Few of the breast cancer reviews referenced research and data from LMICs themselves; cervical cancer reviews were more likely to do so. Most reviews did not include elements of the PRISMA checklist.

Conclusion

Overall, a limited evidence base supports breast and cervical cancer control in LMICs. Further breast and cervical cancer prevention and control studies are necessary in LMICs.  相似文献   

11.

Background

The London Declaration (2012) was formulated to support and focus the control and elimination of ten neglected tropical diseases (NTDs), with targets for 2020 as formulated by the WHO Roadmap. Five NTDs (lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths and trachoma) are to be controlled by preventive chemotherapy (PCT), and four (Chagas’ disease, human African trypanosomiasis, leprosy and visceral leishmaniasis) by innovative and intensified disease management (IDM). Guinea worm, virtually eradicated, is not considered here. We aim to estimate the global health impact of meeting these targets in terms of averted morbidity, mortality, and disability adjusted life years (DALYs).

Methods

The Global Burden of Disease (GBD) 2010 study provides prevalence and burden estimates for all nine NTDs in 1990 and 2010, by country, age and sex, which were taken as the basis for our calculations. Estimates for other years were obtained by interpolating between 1990 (or the start-year of large-scale control efforts) and 2010, and further extrapolating until 2030, such that the 2020 targets were met. The NTD disease manifestations considered in the GBD study were analyzed as either reversible or irreversible. Health impacts were assessed by comparing the results of achieving the targets with the counterfactual, construed as the health burden had the 1990 (or 2010 if higher) situation continued unabated.

Principle Findings/Conclusions

Our calculations show that meeting the targets will lead to about 600 million averted DALYs in the period 2011–2030, nearly equally distributed between PCT and IDM-NTDs, with the health gain amongst PCT-NTDs mostly (96%) due to averted disability and amongst IDM-NTDs largely (95%) from averted mortality. These health gains include about 150 million averted irreversible disease manifestations (e.g. blindness) and 5 million averted deaths. Control of soil-transmitted helminths accounts for one third of all averted DALYs. We conclude that the projected health impact of the London Declaration justifies the required efforts.  相似文献   

12.
BackgroundThe World Health Organization’s (WHO) Neglected Tropical Disease (NTD) Road Map for 2021–2030 was recently endorsed by all member states at the World Health Assembly in November 2020. Although only 3 of the 20 NTDs are endemic in Canada (i.e., echinococcosis, rabies, and scabies), the Canadian research community has contributed to advancing the knowledge base of all 20 NTDs. Previous research comprehensively detailed Canadian research on 11 NTDs between 1950 and 2010 using a network analysis approach. The specific objective of the present analysis was to update the publication record over the last decade (2010–2019) to include all 20 NTDs.Materials and methodsA bibliometric analysis was conducted in Scopus and Web of Science databases (for English or French articles published between January 1, 2010 and December 31, 2019) using appropriate search terms for each of the 20 NTDs and where at least 1 of the authors had a Canadian institution address. A 21st search was added to include publications including multiple NTDs or a discussion of NTDs in general. Following assessment of inclusion and exclusion criteria, 2 reviewers independently screened all abstracts, with discordant observations rereviewed to arrive at an agreement. Duplicates were removed.ResultsA total of 1,790 publications were retrieved (1,738 with a disease–specific NTD focus and 52 with a general NTD focus, resulting in 1,659 unique publications), giving an average of over 160 articles per year. Over 80% were classified as full–length research articles. The top 3 journals in terms of frequency were PLOS Neglected Tropical Diseases, PLOS ONE, and the American Journal of Tropical Medicine and Hygiene. Authors’ institutions were from all Canadian provinces. While all 20 NTDs were addressed in these publications, the 5 most commonly studied were leishmaniasis, dengue fever and chikungunya, Chagas disease, soil–transmitted helminthiases, and rabies.ConclusionsCanadian researchers across the country have contributed to the evidence base of all 20 NTDs, publishing an average of over 160 publications per year between 2010 and 2019. As WHO NTD Road Map 2021–2030 rolls out globally, the Canadian research community, in collaboration with its partners and in solidarity with people living in vulnerable circumstances in endemic regions worldwide, is well positioned to meet future research challenges so that the goal of eliminating the disease burden attributable to NTDs can be achieved.  相似文献   

13.

Background

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA methylation, DNA synthesis, and DNA repair. In addition, it is a possible risk factor in neural tube defects (NTDs). The association of the C677T polymorphism in the MTHFR gene and NTD susceptibility has been widely demonstrated, but the results remain inconclusive. In this study, we performed a meta-analysis with 2429 cases and 3570 controls to investigate the effect of the MTHFR C677T polymorphism on NTDs.

Methods

An electronic search of PubMed and Embase database for papers on the MTHFR C677T polymorphism and NTD risk was performed. All data were analysed with STATA (version 11). Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, test of heterogeneity, cumulative meta-analysis, and assessment of bias were performed in our meta-analysis.

Results

A significant association between the MTHFR C677T polymorphism and NTD susceptibility was revealed in our meta-analysis ( TT versus CC: OR  = 2.022, 95% CI: 1.508, 2.712; CT+TT versus CC: OR  = 1.303, 95% CI: 1.089, 1.558; TT versus CC+CT: OR  = 1.716, 95% CI: 1.448, 2.033; 2TT+CT versus 2CC+CT: OR  = 1.330, 95% CI: 1.160, 1.525). Moreover, an increased NTD risk was found after stratification of the MTHFR C677T variant data by ethnicity and source of controls.

Conclusion

The results suggested the maternal MTHFR C677T polymorphism is a genetic risk factor for NTDs. Further functional studies to investigate folate-related gene polymorphisms, periconceptional multivitamin supplements, complex interactions, and the development of NTDs are warranted.  相似文献   

14.

CONTEXT:

Tumor protein 53 (tp53) is one of the candidate gene proposed for neural tube defects, which affects central nervous system during early embryonic development, on the basis of mouse models.

AIMS:

The present study is an attempt to unfold the possible role of tp53 G412C polymorphism in the incidence of neural tube defect (NTDs) in humans.

SETTINGS AND DESIGN:

Case-control study was carried out in government hospitals of Delhi, India.

MATERIALS AND METHODS:

Subjects comprised of 100 mothers of NTD children and 100 matched control mothers. Information on some environmental exposures was collected along with blood samples. After DNA extraction, the genotyping of tp53 G412C polymorphism was carried out by PCR-RFLP method.

Statistical Analysys:

Fisher Exact or Chi square test, binary logistic model, and odds ratio (95% confidence interval) calculations were used to evaluate effect of risk factors on NTDs using SPSS v17.0.

RESULTS:

The ‘CC’ genotype of tp53 G412C showed protective effect towards the development of anencephaly and/or encephalocele (OR: 0.44; 95% CI: 0.19-1.00); however, no significant difference among overall NTD cases and controls was observed (P>0.05). Further segregation of all subjects based on 2 different communities, Hindus and Muslims, the association of ‘CC’ genotype of the polymorphism with reduced NTD risk was observed among Hindu community (OR: 0.33; 95% CI: 0.13-0.79).

CONCLUSION:

The study highlights the selective advantage provided by maternal ‘CC’ genotype, thereby reducing risk of cephalic NTDs, probably due to the lower apoptotic activity of the protein, however, more specifically in the presence of community-specific microenvironment.  相似文献   

15.

Background

The European & Developing Countries Clinical Trials Partnership (EDCTP) is a partnership of European and sub-Saharan African countries that aims to accelerate the development of medical interventions against poverty-related diseases (PRDs). A bibliometric analysis was conducted to 1) measure research output from European and African researchers on PRDs, 2) describe collaboration patterns, and 3) assess the citation impact of clinical research funded by EDCTP.

Methodology/Principal Findings

Disease-specific research publications were identified in Thomson Reuters Web of Science using search terms in titles, abstracts and keywords. Publication data, including citation counts, were extracted for 2003–2011. Analyses including output, share of global papers, normalised citation impact (NCI), and geographical distribution are presented. Data are presented as five-year moving averages. European EDCTP member countries accounted for ~33% of global research output in PRDs and sub-Saharan African countries for ~10% (2007–2011). Both regions contributed more to the global research output in malaria (43.4% and 22.2%, respectively). The overall number of PRD papers from sub-Saharan Africa increased markedly (>47%) since 2003, particularly for HIV/AIDS (102%) and tuberculosis (TB) (81%), and principally involving Southern and East Africa. For 2007–2011, European and sub-Saharan African research collaboration on PRDs was highly cited compared with the world average (NCI in brackets): HIV/AIDS 1.62 (NCI: 1.16), TB 2.11 (NCI: 1.06), malaria 1.81 (NCI: 1.22), and neglected infectious diseases 1.34 (NCI: 0.97). The NCI of EDCTP-funded papers for 2003–2011 was exceptionally high for HIV/AIDS (3.24), TB (4.08) and HIV/TB co-infection (5.10) compared with global research benchmarks (1.14, 1.05 and 1.35, respectively).

Conclusions

The volume and citation impact of papers from sub-Saharan Africa has increased since 2003, as has collaborative research between Europe and sub-Saharan Africa. >90% of publications from EDCTP-funded research were published in high-impact journals and are highly cited. These findings corroborate the benefit of collaborative research on PRDs.  相似文献   

16.

Background

Clinical genetic testing is becoming an integral part of medical care for inherited disorders. While genetic testing and counseling are readily available in high-income countries, in low- and middle-income countries like Kenya genetic testing is limited and genetic counseling is virtually non-existent. Genetic testing is likely to become widespread in Kenya within the next decade, yet there has not been a concomitant increase in genetic counseling resources. To address this gap, we designed an interactive workshop for clinicians in Kenya focused on the genetics of the childhood eye cancer retinoblastoma. The objectives were to increase retinoblastoma genetics knowledge, build genetic counseling skills and increase confidence in those skills.

Methods

The workshop was conducted at the 2013 Kenyan National Retinoblastoma Strategy meeting. It included a retinoblastoma genetics presentation, small group discussion of case studies and genetic counseling role-play. Knowledge was assessed by standardized test, and genetic counseling skills and confidence by questionnaire.

Results

Knowledge increased significantly post-workshop, driven by increased knowledge of retinoblastoma causative genetics. One-year post-workshop, participant knowledge had returned to baseline, indicating that knowledge retention requires more frequent reinforcement. Participants reported feeling more confident discussing genetics with patients, and had integrated more genetic counseling into patient interactions.

Conclusion

A comprehensive retinoblastoma genetics workshop can increase the knowledge and skills necessary for effective retinoblastoma genetic counseling.  相似文献   

17.
“Fit-for-purpose” diagnostic tests have emerged as a prerequisite to achieving global targets for the prevention, control, elimination, and eradication of neglected tropical diseases (NTDs), as highlighted by the World Health Organization’s (WHO) new roadmap. There is an urgent need for the development of new tools for those diseases for which no diagnostics currently exist and for improvement of existing diagnostics for the remaining diseases. Yet, efforts to achieve this, and other crosscutting ambitions, are fragmented, and the burden of these 20 debilitating diseases immense. Compounded by the Coronavirus Disease 2019 (COVID-19) pandemic, programmatic interruptions, systemic weaknesses, limited investment, and poor commercial viability undermine global efforts—with a lack of coordination between partners, leading to the duplication and potential waste of scant resources. Recognizing the pivotal role of diagnostic testing and the ambition of WHO, to move forward, we must create an ecosystem that prioritizes country-level action, collaboration, creativity, and commitment to new levels of visibility. Only then can we start to accelerate progress and make new gains that move the world closer to the end of NTDs.

Ahead of the second-ever World Neglected Tropical Disease (NTD) Day in January 2021, and amid the global Coronavirus Disease 2019 (COVID-19) crisis, the World Health Organization (WHO) launched a new roadmap for the prevention, control, elimination, and eradication of NTDs—a group of 20 diseases affecting more than one billion people worldwide [1]. Diagnostic testing is central to safeguarding decades of progress in NTDs and must be strategically leveraged to reach the goals laid out in the new NTD roadmap.Stepping back, we recognize the massive progress that has been made to combat NTDs. Today, 500 million fewer people need treatment for these debilitating diseases than in 2010, and 40 countries or areas have eliminated at least one of the 20 [1]. Yet, despite these gains, NTDs continue to impose a devastating human, social, and economic toll on the world’s poorest and most vulnerable communities [26]. COVID-19 is compounding the situation by wreaking havoc on health systems, which impacts progress on NTDs: this includes interruptions to mass treatment campaigns for diseases controlled through preventive chemotherapy (PCT) or individual case management interventions, as well as rerouting the already sparse available funding and resources [7].Diagnostic testing has been central to the COVID-19 response even with the introduction of vaccines. The rapid ramp up of research and development (R&D), the scaling up of low-cost and decentralized testing, and country-led approaches to tailored testing strategies for COVID-19, as well as lessons learned, can also provide new thinking around testing for NTDs. The new NTD roadmap offers a series of multisectoral actions and intensified, cross-cutting approaches to get us back on track—with diagnostics central to unlocking and accelerating this progress [1].However, the NTD roadmap shows that, of all 20 diseases or disease groups, just 2 (yaws and snakebite envenoming) are supported by adequate and accessible diagnostic tools. Six have no diagnostic tests available at all, with tools for each of the remaining conditions in urgent need of adaptation, modification, and/or improved accessibility (likely a more cost-effective option than the development of new diagnostics for these NTDs) [1]. This has to change. NTDs cannot continue to be neglected in favor of other competing priorities, or we risk losing the progress made to date.Until the COVID-19 pandemic thrust testing into the spotlight, diagnostics have been a “silent partner” in healthcare, receiving little by way of international attention and funding, specific country strategies, and dedicated budget lines. NTDs are no exception. Just 5% of the (limited) funding made available to NTDs has been invested in new diagnostics, compared with 44% and 39% on basic research and medicines and vaccines, respectively [1]. For most NTDs, diagnostics are a market failure situation, and as such, are not commercially viable enough to attract private investment. Consequently, very few diagnostic developers engage in this area—contrary, for example, to COVID-19, where developers are in the hundreds. Furthermore, as some diseases approach the last mile of elimination, falling infection rates precipitate the need for increasingly sensitive tests [1]. But progress in R&D is slow and fragmented, with a lack of engagement and coordination between governments, industry, donors, and development actors, leading to the duplication—and potential waste—of scant resources. While serial testing using multiple diagnostic tools or techniques can compensate for low sensitivity [8], such approaches are associated with increased costs of testing, sample collection, and transportation.Closing the diagnostic gap then, is a prerequisite to achieving the global ambition for NTDs, with the new NTD roadmap giving a blueprint for action. It is for this reason that we call on governments, industry, donors, and development actors to
  • Prioritize country-level diagnostic action: As we enter a new era in NTD management and control, we need to shift from traditional, donor-led models to country-driven initiatives. Government ministries must engage with, and advocate on behalf of, their poorest and most vulnerable populations so that no one is left behind. Political frameworks should prioritize diagnostics for NTDs in line with local disease burdens, and as part of fully funded, national health action plans that include a commitment to seeing the process through. Capacity building for diagnostics is also essential at country, sub-regional, and regional levels, including the establishment of laboratory networks, so that testing can be implemented in field settings.
  • Collaborate and create: There is never going to be a one-size-fits-all for NTD diagnostics. If targets are to be achieved, we need global frameworks that enable industry, manufacturers, and pharmaceutical companies to engage in the whole process, from R&D to supply chain logistics. Companies need to share knowledge, learnings, and innovation across multiple diseases. This will mean breaking silos and finding new ways to harness the power of existing products, technologies, and infrastructures. Further, it will mean creating economies of scale through regional manufacturing hubs and finding new, cross-cutting approaches to drive systemic change. To obtain the maximum access to technology and relevant intellectual property rights for NTD diagnostics, it is important to ensure that such rights are broadly available (non-exclusively) in NTD-endemic countries and are affordable (e.g., zero royalty rights).
  • Commit to new levels of visibility: The resources needed to realize that this ambition is limited, with a lack of visibility around the diagnostic landscape undermining progress in NTD management and control. Creating an ecosystem with visibility, transparency, and integration at its core will help streamline programmatic action, reduce the risk of duplication, and leverage the full potential from this limited pool. To do this, industry, donors, and other development actors must provide the information needed to map both funding and product landscapes. Using this information to create a virtual product pipeline will bring an unprecedented level of transparency to diagnostic developments—harmonizing multisectoral efforts and creating a robust information platform from which new collaborations, synergies, and innovation can grow. Developing an online open-access diagnostic pipeline for WHO NTD roadmap priority pathogens would serve multiple purposes: (i) drive advocacy to address critical product and funding gaps; and (ii) reduce the likelihood of duplication of efforts. Together, this would strengthen partnerships across all stakeholders, from donors to industry partners, to accelerate development, evaluation, and adoption of diagnostic solutions for NTDs. The newly established NTD Diagnostic Technical Advisory Group (DTAG) to WHO NTD department has already identified the priority diagnostic needs for NTD programs not only in terms of developing new tools, but also the accessibility of existing tools [9]. Several sub-groups that focus more narrowly on single diseases or specific topics (i.e., skin NTDs or cross-cutting) have been established and have been tasked to develop tool and biomarker agnostic target product profiles (TPPs), which are now available (for the most part) on WHO website for use by any diagnostic manufacturer to support development of their specific technology. Alignment with these diagnostic priorities by all stakeholders is strongly recommended to facilitate attainment of WHO 2030 NTD roadmap goals.
  • Establish NTD biobanks: Biobanks are required for the clinical evaluation and validation of new diagnostic tests. Establishing local biobanks would support a country-driven approach as well as allowing for head-to-head comparisons between tests and assessments of cross-reactivity across different NTDs.
  • Invest in existing diagnostics: The development of new diagnostics is a complex process, and the time from development to implementation can be lengthy. Training laboratory staff in the use of existing diagnostics and the establishment of robust quality control systems are effective approaches to achieving shorter-term improvements.
There is a long road ahead, but the past 10 years have shown us what can be achieved when governments, industry, donors, and development actors are bound by a shared, global goal. As we look forward to the next decade, we must prioritize country-level action, collaboration, creativity, and commitment to new levels of visibility, if we are to finally end the neglect of NTDs.  相似文献   

18.

Background

After many years of general neglect, interest has grown and efforts came under way for the mapping, control, surveillance, and eventual elimination of neglected tropical diseases (NTDs). Disease risk estimates are a key feature to target control interventions, and serve as a benchmark for monitoring and evaluation. What is currently missing is a georeferenced global database for NTDs providing open-access to the available survey data that is constantly updated and can be utilized by researchers and disease control managers to support other relevant stakeholders. We describe the steps taken toward the development of such a database that can be employed for spatial disease risk modeling and control of NTDs.

Methodology

With an emphasis on schistosomiasis in Africa, we systematically searched the literature (peer-reviewed journals and ‘grey literature’), contacted Ministries of Health and research institutions in schistosomiasis-endemic countries for location-specific prevalence data and survey details (e.g., study population, year of survey and diagnostic techniques). The data were extracted, georeferenced, and stored in a MySQL database with a web interface allowing free database access and data management.

Principal Findings

At the beginning of 2011, our database contained more than 12,000 georeferenced schistosomiasis survey locations from 35 African countries available under http://www.gntd.org. Currently, the database is expanded to a global repository, including a host of other NTDs, e.g. soil-transmitted helminthiasis and leishmaniasis.

Conclusions

An open-access, spatially explicit NTD database offers unique opportunities for disease risk modeling, targeting control interventions, disease monitoring, and surveillance. Moreover, it allows for detailed geostatistical analyses of disease distribution in space and time. With an initial focus on schistosomiasis in Africa, we demonstrate the proof-of-concept that the establishment and running of a global NTD database is feasible and should be expanded without delay.  相似文献   

19.

Background

The grades of recommendation, assessment, development and evaluation (GRADE) approach is widely implemented in systematic reviews, health technology assessment and guideline development organisations throughout the world. A key advantage to this approach is that it aids transparency regarding judgments on the quality of evidence. However, the intricacies of making judgments about research methodology and evidence make the GRADE system complex and challenging to apply without training.

Methods

We have developed a semi-automated quality assessment tool (SAQAT) l based on GRADE. This is informed by responses by reviewers to checklist questions regarding characteristics that may lead to unreliability. These responses are then entered into the Bayesian network to ascertain the probabilities of risk of bias, inconsistency, indirectness, imprecision and publication bias conditional on review characteristics. The model then combines these probabilities to provide a probability for each of the GRADE overall quality categories. We tested the model using a range of plausible scenarios that guideline developers or review authors could encounter.

Results

Overall, the model reproduced GRADE judgements for a range of scenarios. Potential advantages over standard assessment are use of explicit and consistent weightings for different review characteristics, forcing consideration of important but sometimes neglected characteristics and principled downgrading where small but important probabilities of downgrading are accrued across domains.

Conclusions

Bayesian networks have considerable potential for use as tools to assess the validity of research evidence. The key strength of such networks lies in the provision of a statistically coherent method for combining probabilities across a complex framework based on both belief and evidence. In addition to providing tools for less experienced users to implement reliability assessment, the potential for sensitivity analyses and automation may be beneficial for application and the methodological development of reliability tools.  相似文献   

20.

Background

The Commission on Investing in Health published its report, GlobalHealth2035, in 2013, estimating an investment case for a grand convergence in health outcomes globally. In support of the drafting of the Sustainable Development Goals (SDGs), we estimate what the grand convergence investment case might achieve—and what investment would be required—by 2030.

Methods and Findings

Our projection focuses on a sub-set of low-income (LIC) or lower-middle-income countries (LMIC). We start with a country-based (bottom-up) analysis of the costs and impact of scaling up reproductive, maternal, and child health tools, and select HIV and malaria interventions. We then incorporate global (top-down) analyses of the costs and impacts of scaling up existing tools for tuberculosis, additional HIV interventions, the costs to strengthen health systems, and the costs and benefits from scaling up new health interventions over the time horizon of this forecast. These data are then allocated to individual countries to provide an aggregate projection of potential cost and impact at the country level. Finally, incremental costs of R&D for low-income economies and the costs of addressing NTDs are added to provide a global total cost estimate of the investment scenario.

Results

Compared with a constant coverage scenario, there would be more than 60 million deaths averted in LIC and 70 million deaths averted in LMIC between 2016 and 2030. For the years 2015, 2020, 2025, and 2030, the incremental costs of convergence in LIC would be (US billion) $24.3, $21.8, $24.7, and $27, respectively; in LMIC, the incremental costs would be (US billion) $34.75, $38.9, $48.7, and $56.3, respectively.

Conclusion

Key health outcomes in low- and low-middle income countries can significantly converge with those of wealthier countries by 2030, and the notion of a “grand convergence” may serve as a unifying theme for health indicators in the SDGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号