首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
随着影像技术的发展和后处理功能的完善,肝灌注成像以研究组织、器官血流动力学变化已成为影像界关注的热点,然而CT灌注成像在肝脏等实质性器官中的应用尚处于探索阶段。肝脏具有双重血供,在各种病理生理情况下,肝脏动静脉之间及门静脉之间的血流动力学发生着复杂的变化。CT被认为是诊断肝脏病变最有价值的影像学方法,CT灌注成像能反映组织器官微循环内的血流动力学变化,是一种快速、准确、无创的功能成像方法。肝脏灌注CT检查可以同时获得形态和功能两方面的信息,使我们有可能早于形态学变化之前发现肝脏病变,有助于肝脏疾病的早期诊断和治疗,并能评价各种治疗手段对肝脏血流动力学变化的影响。本文针对全肝灌注CT扫描在临床的应用进行综述。  相似文献   

2.
Organ decellularization is emerging as a promising regenerative medicine approach as it is able to provide an acellular, three-dimensional biological scaffold material that can be seeded with living cells for organ reengineering. However this application is currently limited to donor-derived decellularized organs for reengineering in vitro and no study has been conducted for re-engineering the decellularized organ in vivo. We developed a novel technique of a single liver lobe decellularization in vivo in live animals. Using a surgical method to generate a by-pass circulation through the portal vein and infra-hepatic vena cava with a perfusion chamber system, we decellularized the single liver lobe and recellularized it with allogenic primary hepatocytes. Our results showed that the decellularization process in vivo can preserve the vascular structural network and functional characteristics of the native liver lobe. It allows for efficient recellularization of the decellularized liver lobe matrix with allogenic primary hepatocytes. Upon the re-establishment of blood circulation, the recellularized liver lobe is able to gain the function and the allogenic hepatocytes are able to secret albumin. Our findings provide a proof of principle for the in vivo reengineering of liver.  相似文献   

3.
There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 °C.  相似文献   

4.
The perfused rat liver responds intensely to NAD+ infusion (20-100 microM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption are some of the effects that were observed. The aim of the present work was to investigate the distribution of the response to extracellular NAD+ along the hepatic acinus. The bivascularly perfused rat liver was used. Various combinations of perfusion directions (antegrade and retrograde) and infusion routes (portal vein, hepatic vein and hepatic artery) were used in order to supply NAD+ to different regions of the liver parenchyma, also taking advantage of the fact that its extracellular transformation generates steep concentration gradients. Oxygen uptake was stimulated by NAD+ in retrograde perfusion (irrespective of the infusion route) and transiently inhibited in antegrade perfusion. This indicates that the signal causing oxygen uptake inhibition is generated in the periportal area. The signal responsible for oxygen uptake stimulation is homogenously distributed. Stimulation of glucose release was more intense when NAD+ was infused into the portal vein or into the hepatic artery, indicating that stimulation of glycogenolysis predominates in the periportal area. The increases in perfusion pressure were more pronounced when the periportal area was supplied with NAD+ suggesting that the vasoconstrictive elements responding to NAD+ predominate in this region. The response to extracellular NAD+ is thus unequally distributed in the liver. As a paracrine agent, NAD+ is likely to be released locally. It can be concluded that its effects will be different depending on the area where it is released.  相似文献   

5.
Since in the usual perfusion of isolated rat liver via the portal vein an insulin-dependent increase of hepatic glucose uptake could not be demonstrated, the possibility was considered that hepatic glucose uptake might not be a function of the absolute concentration of this substrate but of its concentration gradient between the portal vein and the hepatic artery. Therefore a new method was established for the simultaneous perfusion of isolated rat liver via both the hepatic artery (20-35% flow) and the portal vein (80-65% flow). When glucose was offered in a concentration gradient, 9.5 mM in the portal vein and 6 mM in the hepatic artery, insulin given via both vessels caused a shift from net glucose release to uptake. This insulin-dependent shift was not observed when glucose was offered without a gradient or with an inverse gradient, 6 mM in the portal vein and 9.5 mM in the hepatic artery. Using a portal-arterial glucose gradient as a signal the liver might be able to differentiate between endogenous and exogenous glucose.  相似文献   

6.
Liver cirrhosis is characterized by distortion of liver architecture, necrosis of hepatocytes and regenerative nodules formation leading to cirrhosis. Various types of cell sources have been used for the management and treatment of decompensated liver cirrhosis. Knowledge of stem cells has offered a new dimension for regenerative therapy and has been considered as one of the potential adjuvant treatment modality in patients with end stage liver diseases (ESLD). Human fetal hepatic progenitor cells are less immunogenic than adult ones. They are highly propagative and challenging to cryopreservation. In our earlier studies we have demonstrated that fetuses at 10-18 wk of gestation age contain a large number of actively dividing hepatic stem and progenitor cells which possess bi-potent nature having potential to differentiate into bile duct cells and mature hepatocytes. Hepatic stem cell therapy for the treatment of ESLD is in their early stage of the translation. The emerging technology of decellularization and recellularization might offer a significant platform for developing bioengineered personalized livers to come over the scarcity of desired number of donor organs for the treatment of ESLD. Despite these significant advancements long-term tracking of stem cells in human is the most important subject nowadays in order to answer several unsettles issues regarding the route of delivery, the choice of stem cell type(s), the cell number and the time-point of cell delivery for the treatment in a chronic setting. Answering to these questions will further contribute to the development of safer, noninvasive, and repeatable imaging modalities that could discover better cell therapeutic approaches from bench to bed-side. Combinatorial approach of decellularization and nanotechnology could pave a way towards the better understanding in determination of cell fate post-transplantation.  相似文献   

7.
The metabolism of fructose was investigated in the bivascularly and hemoglobin-free perfused rat liver. Anterograde and retrograde perfusions were performed. In anterograde perfusion, fructose was infused at identical rates (19 mumols min-1 g-1) via the portal vein (all liver cells) or the hepatic artery (predominantly perivenous cells); in retrograde perfusion fructose was infused via the hepatic vein (all liver cells) or the hepatic artery (only periportal cells). The cellular water spaces accessible via the hepatic artery were measured by means of the multiple-indicator dilution technique. The following results were obtained. (i) Fructose was metabolized to glucose, lactate and pyruvate even when this substrate was infused via the hepatic artery in retrograde perfusion; oxygen consumption was also increased. (ii) When referred to the water spaces accessible to fructose via the hepatic artery in each perfusion mode, the rate of glycolysis was 0.99 +/- 0.14 mumols min-1 ml-1 in the retrograde mode; and, 2.05 +/- 0.19 mumols min-1 ml-1 in the anterograde mode (P = 0.002). (iii) The extra oxygen uptake due to fructose infusion via the hepatic artery was 1.09 +/- 0.16 mumols min-1 ml-1 in the retrograde mode; and, 0.51 +/- 0.08 mumols min-1 ml-1 in the anterograde mode (P = 0.005). (iv) Glucose production from fructose via the hepatic artery was 2.18 +/- 0.18 mumols min-1 ml-1 in the retrograde mode; and, 1.83 +/- 0.16 mumols min-1 ml-1 in the anterograde mode (P = 0.18). (v) Glucose production and extra oxygen uptake due to fructose infusion did not correlate by a single factor in all perfusion modes. It was concluded that: (a) rates of glycolysis are lower in the periportal area, confirming previous views; (b) extra oxygen uptake due to fructose infusion is higher in the periportal area; (c) a predominance of glucose production in the periportal area could not be demonstrated; and (d) extra oxygen uptake due to fructose infusion is not a precise indicator for glucose synthesis.  相似文献   

8.

Background

Although non-heart-beating donors have the potential to increase the number of available organs, the livers are used very seldom because of the risk of primary non-function. There is evidence that machine perfusion is able to improve the preservation of marginal organs, and therefore we evaluated in our study the influence of the perfusate temperature during oxygenated machine perfusion on the graft quality.

Methods

Livers from male Wistar rats were harvested after 60-min warm ischemia induced by cardiac arrest. The portal vein was cannulated and the liver flushed with Lifor® (Lifeblood Medical, Inc.) organ preservation solution for oxygenated machine perfusion (MP) at 4, 12 or 21 °C. Other livers were flushed with HTK and stored at 4 °C by conventional cold storage (4 °C-CS). Furthermore two groups with either warm ischemic damage only or without any ischemic damage serve as control groups. After 6 h of either machine perfusion or cold storage all livers were normothermic reperfused with Krebs–Henseleit buffer, and functional as well as structural data were analyzed.

Results

Contrary to livers stored by static cold storage, machine perfused livers showed independently of the perfusate temperature a significantly decreased enzyme release of hepatic transaminases (ALT) during isolated reperfusion. Increasing the machine perfusion temperature to 21 °C resulted in a marked reduction of portal venous resistance and an increased bile production.

Conclusions

Oxygenated machine perfusion improves viability of livers after prolonged warm ischemic damage. Elevated perfusion temperature of 21 °C reconstitutes the hepatic functional capacity better than perfusion at 4 or 12 °C.  相似文献   

9.
In perfused rat liver perivascular nerve stimulation (7.5 Hz, 20 V, 2 ms, 5 min) at the liver hilus caused an increase in glucose and lactate output and a decrease in flow. The influence of the alpha 1-receptor blocker prazosine and the beta-blocker propranolol on these nerve effects was studied in the isolated rat liver perfused classically via the portal vein only and, as developed recently, via both the hepatic artery and the portal vein. 1) In livers perfused via the portal vein only the nerve stimulation-dependent metabolic alterations were nearly completely inhibited by prazosine (5 microM), but not influenced by propranolol (10 microM). The hemodynamic changes were lowered to only 33% by prazosine and not altered by propranolol either. 2) In livers perfused via the hepatic artery (100 mm Hg, 20-40% of flow) and the portal vein (10 mm Hg, 80-60% of flow)--similar to portal perfusions--the nerve stimulation--dependent metabolic alterations were almost completely blocked by arterial, portal or simultaneously applied arterial and portal prazosine. However--in contrast to portal perfusions--the metabolic alterations were reduced to about 20% (glucose) and 50% (lactate) also by propranolol independently of its site of application. The decrease in flow was reduced by prazosine to about 60%, 50% and 30% when applied via the artery, the portal vein or via both vessels, respectively. The hemodynamic alterations were not influenced by propranolol. These results allow the following conclusions: A subpopulation of beta-receptors can play a permissive role in the alpha 1-receptor-mediated sympathetic nerve action on glucose and lactate metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In the perfused rat liver stimulation of the hepatic nerves around the portal vein and the hepatic artery was previously shown to increase glucose output, to shift lactate uptake to output, to decrease and re-distribute intrahepatic perfusion flow and to cause an overflow of noradrenaline into the hepatic vein. The metabolic effects could be caused directly via nerve hepatocyte contacts or indirectly by the hemodynamic changes and/or by noradrenaline overflow from the afferent vasculature into the sinusoids. Evidence against the indirect modes of nerve action is presented. Reduction of perfusion flow by lowering the perfusion pressure from 2 to 1 ml X min-1 X g-1--as after nerve stimulation--or to 0.35 ml X min-1 X g-1--far beyond the nerve stimulation-dependent effect--did not change glucose output and lowered lactate uptake only slightly. Only re-increase of flow to 2 ml X min-1 X g-1 enhanced glucose and lactate release transiently due to washout of glucose and lactate accumulated in parenchymal areas not perfused during low perfusion flow. In chemically sympathectomized livers nerve stimulation decreased perfusion flow almost normally but without changing the intrahepatic microcirculation; yet it enhanced glucose and lactate output only insignificantly and caused noradrenaline overflow of less than 10% of normal. Conversely, in the presence of nitroprussiate (III) nerve stimulation reduced overall flow only slightly without intrahepatic redistribution but still increased glucose and lactate output strongly and caused normal noradrenaline overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In contrast to conventional static cold preservation (0-4 °C), ex situ machine perfusion may provide better preservation of donor livers. Continuous perfusion of organs provides the opportunity to improve organ quality and allows ex situ viability assessment of donor livers prior to transplantation. This video article provides a step by step protocol for ex situ normothermic machine perfusion (37 °C) of human donor livers using a device that provides a pressure and temperature controlled pulsatile perfusion of the hepatic artery and continuous perfusion of the portal vein. The perfusion fluid is oxygenated by two hollow fiber membrane oxygenators and the temperature can be regulated between 10 °C and 37 °C. During perfusion, the metabolic activity of the liver as well as the degree of injury can be assessed by biochemical analysis of samples taken from the perfusion fluid. Machine perfusion is a very promising tool to increase the number of livers that are suitable for transplantation.  相似文献   

12.
1. The metabolic and hemodynamic effects of prostaglandin F2 alpha, leukotriene C4 and the thromboxane A2 analogue U-46619 were studied during physiologically antegrade (portal to hepatic vein) and retrograde (hepatic to portal vein) perfusion and in a system of two rat livers perfused in sequence. 2. The stimulatory effects of prostaglandin F2 alpha (3 microM) on hepatic glucose release, perfusion pressure and net Ca2+ release were diminished by 77%, 95% and 64%, respectively, during retrograde perfusion when compared to the antegrade direction, whereas the stimulation of 14CO2 production from [1-14C]glutamate by prostaglandin F2 alpha (which largely reflects the metabolism of perivenous hepatocytes) was lowered by only 20%. Ca2+ mobilization and glucose release from the liver comparable to that seen during antegrade perfusion could also be observed in retrograde perfusions; however, higher concentrations of the prostaglandin were required. 3. The glucose, Ca2+ and pressure response to leukotriene C4 (20 nM) or the thromboxane A2 analogue U-46619 (200 nM) of livers perfused in the antegrade direction were diminished by about 90% during retrograde perfusion. Sodium nitroprusside (20 microM) decreased the pressure response to leukotriene C4 (20 nM) and U-46619 (200 nM) by about 40% and 20% in antegrade perfusions, respectively, but did not affect the maximal increase of glucose output. 4. When two livers were perfused antegradely in series, such that the perfusate leaving the first liver (liver I) entered a second liver (liver II), infusion of U-46619 at concentrations below 200 nM to the influent perfusate of liver I increased the portal pressure of liver I, but not of liver II. At higher concentrations of U-46619 there was also an increase of the portal pressure of liver II and with concentrations above 800 nM the pressure responses of both livers were near-maximal [19.6 +/- 0.8 (n = 7) cm H2O and 16.5 +/- 1.1 (n = 8) cm H2O for livers I and II, respectively]. There was a similar behaviour of glucose release from livers I and II in response to U-46619 infusion. When liver I was perfused in the retrograde direction, a significant pressure or glucose response of liver II (antegrade perfusion) could not be observed even with U-46619 concentrations up to 1000 nM. 5. Similarly, the perfusion pressure increase and glucose release induced by leukotriene C4 (10 nM) observed with liver II was only about 20% of that seen with liver I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Tissue engineering has been able to develop novel decellularization-recellularization techniques, which facilitates the research for the generation of functional organs. This is based in the initial obtention of the organ's extracellular matrix (ECM). Therefore, any improvement in the decellularization process would have a positive impact in the results of the recellularization process. Nevertheless, commonly the methods and equipment employed for this process are expensive and thus limit the access of this technique to various research groups globally. To develop a decellularization technique with the exclusive use of hydrostatic pressure of detergent solutions, to have an easily accessible and low-cost technique that meets the basic requirements of acellularity and functionality of the ECM. This experimental study was performed in 10 male Wistar rats, obtaining the liver to carry out serial washes, with 1%, 2%, and 3% Triton X-100 solutions and 0.1% SDS. The washes were performed by using a gravity perfusion system (GPS), which assured us a continuous hydrostatic pressure of 7.5 mmHg. The obtained ECM was processed using stains and immunostaining to determine the residual cell content and preservation of its components. The staining showed a removal of cellular and nuclear components of approximately 97% of the acellular ECM, with an adequate three-dimensional pattern of collagen and proteoglycans. Furthermore, the acellular ECM allowed the viability of a primary hepatocyte culture. The use of the GPS decellularization technique allowed us to obtain an acellular and functional ECM, drastically reducing experimentation costs.  相似文献   

14.
The zonation of the purinergic action of ATP in the hepatic parenchyma was investigated in the bivascularly perfused rat liver by means of anterograde and retrograde perfusion. Livers from fed rats were used, and ATP was infused according to four different experimental protocols: (A) anterograde perfusion and ATP infusion via the portal vein; (B) anterograde perfusion and ATP via the hepatic artery; (C) retrograde perfusion and ATP via the hepatic vein; (D) retrograde perfusion and ATP via the hepatic artery. The following metabolic parameters were measured: glucose release, lactate production and oxygen consumption. The hemodynamic effects were evaluated by measuring the sinusoidal mean transit times by means of the indicator-dilution technique. ATP was infused during 20 min at four different rates (between 0.06-0.77 µmol min-1 g liver-1; 20-200 µM) in each of the four experimental protocols.The results that were obtained allow several conclusions with respect to the localization of the effects of ATP along the hepatic acini: (1) In retrograde perfusion the sinusoidal mean transit times were approximately twice those observed in anterograde perfusion. ATP increased the sinusoidal mean transit times only in retrograde perfusion (protocols C and D). The effect was more pronounced with protocol D. These results allow the conclusion that the responsive vasoconstrictive elements are localized in a pre-sinusoidal region; (2) All hepatic cells, periportal as well as perivenous, were able to metabolize ATP, so that concentration gradients were generated with all experimental protocols. Extraction of ATP was more pronounced in retrograde perfusion, an observation that can be attributed, partly at least, to the longer sinusoidal transit times. In anterograde perfusion, the extraction of ATP was time-dependent, a phenomenon that cannot be satisfactorily explained with the available data; (3) ATP produced a transient initial inhibition of oxygen uptake when protocols A and B were employed. These protocols are the only ones in which the cells situated shortly after the intrasinusoidal confluence of the portal vein and the hepatic artery were effectively supplied with ATP. The decrease in oxygen consumption was more pronounced at low ATP infusions when protocol B was employed. These observations allow the conclusion that the former phenomenon is localized mainly in cells situated shortly after the intrasinusoidal confluence of the portal vein and hepatic artery. Oxygen consumption in all other cells, especially the proximal periportal ones, is increased by ATP; (4) In agreement with previous data found in the literature, glycogenolysis stimulation by ATP was more pronounced in the periportal region. The cells that respond more intensively are not the proximal periportal ones, but those situated in the region of the intrasinusoidal confluence of the portal vein and the hepatic artery.  相似文献   

15.
In the isolated rat liver perfused in situ, stimulation of the nerve bundles around the hepatic artery and portal vein caused an increase of glucose and lactate output and a reduction of perfusion flow. These changes could be inhibited completely by alpha-receptor blockers. The possible involvement of inositol phosphates in the intracellular signal transmission was studied. 1. In cell-suspension experiments, which were performed as a positive control, noradrenaline caused an increase in glucose output and, in the presence of 10 mM LiCl, a dose-dependent and time-dependent increase of inositol mono, bis and trisphosphate. 2. In the perfused rat liver 1 microM noradrenaline caused an increase of glucose and lactate output and in the presence of 10 mM LiCl a time-dependent increase of inositol mono, bis and trisphosphate that was comparable to that observed in cell suspensions. 3. In the perfused rat liver stimulation of the nerve bundles around the portal vein and hepatic artery caused a similar increase in glucose and lactate output to that produced by noradrenaline, but in the presence of 10 mM LiCl there was a smaller increase of inositol monophosphate and no increase of inositol bis and trisphosphate. These findings are in line with the proposal that circulating noradrenaline reaches every hepatocyte, causing a clear overall increase of inositol phosphate formation and thus calcium release from the endoplasmic reticulum, while the hepatic nerves reach only a few cells causing there a small local change of inositol phosphate metabolism and thence a propagation of the signal via gap junctions.  相似文献   

16.
The present study was undertaken to investigate hepatic microcirculatory response following partial portal vein ligation (PPVL) in rats. Portal pressure was markedly increased 2-6 wk after PPVL, but no significant reduction in sinusoidal perfusion and hepatocellular injury were detected. However, marked neovascularization was observed in PPVL rats using intravital microscopy and scanning electron microscopy (SEM). Extremely high red blood cell velocity (2,000-4,900 microm/s) was seen in these vessels. Injection of fluorescein sodium via the carotid artery revealed that the neovessels originated from the hepatic arterial vasculature. This was further confirmed by clamping the common hepatic artery and phenylephrine injection from the carotid artery. These vessels maintained sufficient flow after massive sinusoidal shutdown elicited by the portal infusion of endothelin receptor B agonist IRL-1620. SEM also showed extensive neovascularization at the hilum. Additionally, clamping the portal vein decreased sinusoidal perfusion only by 9.5% in PPVL, whereas a 71.2% decrease was observed in sham. These results strongly suggest that the liver maintains its microcirculatory flow by vascular remodeling from the hepatic arterial vasculature following PPVL.  相似文献   

17.
Minor T  Manekeller S 《Cryobiology》2007,54(2):188-195
Isolated perfusion of rat livers (IPRL) represents an attractive set-up to be used as a an evaluative tool in the easy and reproducible assessment of liver injury, allowing for screening of new approaches to organ preservation without the expenditure of actual transplantation experiments. Depending on the pathology under investigation, controversy exists concerning the inclusion of albumin in the IPRL. The present study evaluates the use of bovine serum albumin (BSA), simultaneously comparing its effect on healthy and ischemically challenged livers in the same model. Rat livers were excised, flushed via portal vein with Histidine-Tryptophan-Ketoglutarate (HTK) solution and preserved for up to 18 h in HTK at 4 degrees C. Perfusion was performed with Krebs-Henseleit buffer with or without addition of 3% BSA. Control preparations were perfused without prior ischemic storage. In the described model, stability of the preparations was documented for up to 120 min of isolated perfusion and addition of 3% BSA had no adverse effects on the viability of nonischemic livers. While liver perfusion without albumin was inappropriate to reveal alterations in parenchymal or vascular integrity after 18 h of cold preservation, albumin in the perfusate significantly and gradually unmasked differences between nonischemic liver preparations and livers stored ischemically for 8 or 18 h. It could be shown that BSA did have a significant modulatory effect on hepatic induction of apoptosis after ischemia in reducing cleavage of caspase 3. The implementation of albumin is advocated since experimental results are pivotally influenced by the presence or absence of this physiologically constitutive compound in the perfusate.  相似文献   

18.
In the present study the effect of various antiarrhythmic drugs on hepatic perfusion parameters, uptake capacity of organic anions and biliary secretion using the isolated perfused rat liver was examined. Infusion of verapamil (VP), diltiazem, N-propyl-ajmaline (NPAB), and quinidine at pharmacological doses induced consistently a 1.4-1.6-fold increase in portal pressure accompanied by a approximately 60% decrease in bile flow and a approximately 65% inhibition of biliary taurocholate (TC) excretion. Furthermore, hepatic uptake of oxygen, bromosulphthalein (BSP), and TC was significantly reduced. All these effects were dose-dependent and reversible upon withdrawal of the drugs. Studies of the hepatic circulation using a Trypan blue staining technique demonstrated a patchy perfusion pattern during infusion of the antiarrhythmic drugs as compared to the homogenously stained control organ. The hemodynamic alterations and the impairment of the hepatic initial uptake function could be entirely prevented by concomitant administration of the vasodilator papaverine. Bile flow and biliary TC excretion, however, were still inhibited under these conditions. The present results indicate that antiarrhythmic drugs produce cholestasis in the isolated perfused rat liver independently of their adverse effect on hepatic hemodynamics.  相似文献   

19.
Increased intrahepatic resistance (IHR) within cirrhotic liver is caused by increased endotoxemia, cytokines tumor necrosis factor-α (TNF-α), vasoconstrictor thromboxane A2 (TXA2), and disrupted microvasculatures. We evaluated the effects of thalidomide-related inhibition of TNF-α upon the hepatic microcirculation of cirrhosis in rats. Portal venous pressure (PVP), hepatic TNF-α, expression of thromboxane synthase (TXS), and leukocyte common antigen (LCA) were measured in bile-duct-ligated (BDL) rats receiving 1 month of thalidomide (BDL-thalido rats). Portal perfusion pressure (PPP), IHR, and hepatic TXA2 production were measured in the isolated liver perfusion system. Intravital microscopy was used to examine hepatic microvascular disruptions. In BDL-thalido rats, PVP, PPP, IHR, hepatic TXA2 and TNF-α, hydroxyproline content, expression of TXS and LCA, and LPS-induced leukocyte recruitment were significantly decreased. Conversely, hepatic microvascular density and perfused sinusoids were significantly increased. Thalidomide decreased PVP and IHR by reducing hepatic TXA2 and improving hepatic microvascular disruptions in rats with biliary cirrhosis.  相似文献   

20.
Effects of nitric oxide (NO) on hemodynamic and glycogenolytic responses to platelet-activating factor (PAF) and phenylephrine were investigated in perfused livers derived from fed rats. Infusion of NO (34 microM) into perfused livers inhibited PAF (0.22 nM)-induced increases in hepatic glucose output and portal pressure approximately 90 and 85%, respectively, and abolished effects of PAF on hepatic oxygen consumption. NO attenuated PAF-stimulated increases in glucose output and portal pressure, the latter indicative of hepatic vasoconstriction, with a similar dose dependence with an IC50 of approximately 8 microM. In contrast to its effects on PAF-induced responses in the perfused liver, NO inhibited increases in hepatic portal pressure in response to phenylephrine (10 microM) approximately 75% without altering phenylephrine-stimulated glucose output and oxygen consumption. Similarly, infusion of NO into perfused livers significantly inhibited increases in hepatic portal pressure but not in glucose output in response to a submaximal concentration of phenylephrine (0.4 microM). Like NO, sodium nitroprusside (83 microM) significantly inhibited hemodynamic but not glycogenolytic responses to phenylephrine in perfused livers. However, PAF (0.22 nM)-stimulated alterations in hepatic portal pressure, glucose output, and oxygen consumption were unaffected by infusion of sodium nitroprusside (83 microM) into perfused livers. These results provide the first evidence for regulatory effects of NO in the perfused liver and support the contention that PAF, unlike phenylephrine, stimulates glycogenolysis by mechanisms secondary to hepatic vasoconstriction. These observations raise the intriguing possibility that NO may act in liver to regulate hemodynamic responses to vasoactive mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号