首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Increased levels of atmospheric carbon dioxide (CO2) are likely to affect the trophic relationships that exist between plants, their herbivores and the herbivores' natural enemies. This study takes advantage of an open‐top CO2 fertilization experiment in a Florida scrub oak community at Kennedy Space Center, Florida, consisting of eight chambers supplied with ambient CO2 (360 ppm) and eight chambers supplied with elevated CO2 (710 ppm). We examined the effects of elevated CO2 on herbivore densities and levels of leaf consumption, rates of herbivore attack by natural enemies and effects on leaf abscission. Cumulative levels of herbivores and herbivore damage were significantly lower in elevated CO2 than in ambient CO2. This may be because leaf nitrogen levels are lower in elevated CO2. More herbivores die of host plant‐induced death in elevated CO2 than in ambient CO2. Attack rates of herbivores by parasitoids are also higher in elevated CO2, possibly because herbivores need to feed for a longer time in order to accrue sufficient nitrogen (N), thus exposing themselves longer to natural enemies. Insect herbivores cause an increase in abscission rates of leaves throughout the year. Because of the lower insect density in elevated CO2, we thought, abscission rates would be lower in these chambers. However, abscission rates were significantly higher in elevated CO2. Thus, the direct effects of elevated CO2 on abscission are greater than the indirect effects on abscission mediated via lower insect densities. A consequence of increased leaf abscission in elevated CO2 is that nutrient deposition rates to the soil surface are accelerated.  相似文献   

2.
Interactions between the moth Spodoptera littoralis and two of its host plants, alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) were examined, using plants grown under ambient (350 ppm) and elevated (700 ppm) CO2 conditions. To determine strength and effects of herbivore‐induced responses assays were performed with both undamaged (control) and herbivore damaged plants. CO2 and damage effects on larval host plant preferences were determined through dual‐choice bioassays. In addition, larvae were reared from hatching to pupation on experimental foliage to examine effects on larval growth and development. When undamaged plants were used S. littoralis larvae in consumed more cotton than alfalfa, and CO2 enrichment caused a reduction in the preference for cotton. With damaged plants larvae consumed equal amounts of the two plant species (ambient CO2 conditions), but CO2 enrichment strongly shifted preferences towards cotton, which was then consumed three times more than alfalfa. Complementary assays showed that elevated CO2 levels had no effect on the herbivore‐induced responses of cotton, whereas those of alfalfa were significantly increased. Larval growth was highest for larvae fed undamaged cotton irrespectively of CO2 level, and lowest for larvae on damaged alfalfa from the high CO2 treatment. Development time increased on damaged cotton irrespectively of CO2 treatment, and on damaged alfalfa in the elevated CO2 treatment. These results demonstrate that elevated CO2 levels can cause insect herbivores to alter host plant preferences, and that effects on herbivore‐induced responses may be a key mechanism behind these processes. Furthermore, since the insects were shown to avoid foliage that reduced their physiological performance, our data suggest that behavioural host plant shifts result in partial escape from negative consequences of feeding on high CO2 foliage. Thus, CO2 enrichment can alter both physiology and behaviour of important insect herbivores, which in turn may to impact plant biodiversity.  相似文献   

3.
The effects of elevated CO2 on plant growth and insect herbivory have been frequently investigated over the past 20 years. Most studies have shown an increase in plant growth, a decrease in plant nitrogen concentration, an increase in plant secondary metabolites and a decrease in herbivory. However, such studies have generally overlooked the fact that increases in plant production could cause increases of herbivores per unit area of habitat. Our study investigated leaf production, herbivory levels and herbivore abundance per unit area of leaf litter in a scrub‐oak system at Kennedy Space Center, Florida, under conditions of ambient and elevated CO2, over an 11‐year period, from 1996 to 2007. In every year, herbivory, that is leafminer and leaftier abundance per 200 leaves, was lower under elevated CO2 than ambient CO2 for each of three species of oaks, Quercus myrtifolia, Quercus chapmanii and Quercus geminata. However, leaf litter production per 0.1143 m2 was greater under elevated CO2 than ambient CO2 for Q. myrtifolia and Q. chapmanii, and this difference increased over the 11 years of the study. Leaf production of Q. geminata under elevated CO2 did not increase. Leafminer densities per 0.1143 m2 of litterfall for Q. myrtifolia and Q. chapmanii were initially lower under elevated CO2. However, shortly after canopy closure in 2001, leafminer densities per 0.1143 m2 of litter fall became higher under elevated CO2 and remained higher for the remainder of the experiment. Leaftier densities per 0.1143 m2 were also higher under elevated CO2 for Q. myrtifolia and Q. chapmanii over the last 6 years of the experiment. There were no differences in leafminer or leaftier densities per 0.1143 m2 of litter for Q. geminata. These results show three phenomena. First, they show that elevated CO2 decreases herbivory on all oak species in the Florida scrub‐oak system. Second, despite lower numbers of herbivores per 200 leaves in elevated CO2, increased leaf production resulted in higher herbivore densities per unit area of leaf litter for two oak species. Third, they corroborate other studies which suggest that the effects of elevated CO2 on herbivores are species specific, meaning they depend on the particular plant species involved. Two oak species showed increases in leaf production and herbivore densities per 0.1143 m2 in elevated CO2 over time while another oak species did not. Our results point to a future world of elevated CO2 where, despite lower plant herbivory, some insect herbivores may become more common.  相似文献   

4.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   

5.
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO2. Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO2-induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 l CO2 l–1 or to 610 l CO2 l–1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO2. Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO2 under relatively low nutrient conditions. Hence, the potential importance of CO2-induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.  相似文献   

6.
The carbon/nutrient balance hypothesis suggests that leaf carbon to nitrogen ratios influence the synthesis of secondary compounds such as condensed tannins. We studied the effects of rising atmospheric carbon dioxide on carbon to nitrogen ratios and tannin production. Six genotypes of Populus tremuloides were grown under elevated and ambient CO2 partial pressure and high- and low-fertility soil in field open-top chambers in northern lower Michigan, USA. During the second year of exposure, leaves were harvested three times (June, August, and September) and analyzed for condensed tannin concentration. The carbon/nutrient balance hypothesis was supported overall, with significantly greater leaf tannin concentration at high CO2 and low soil fertility compared to ambient CO2 and high soil fertility. However, some genotypes increased tannin concentration at elevated compared to ambient CO2, while others showed no CO2 response. Performance of lepidopteran leaf miner (Phyllonorycter tremuloidiella) larvae feeding on these plants varied across genotypes, CO2, and fertility treatments. These results suggest that with rising atmospheric CO2, plant secondary compound production may vary within species. This could have consequences for plant–herbivore and plant–microbe interactions and for the evolutionary response of this species to global climate change.  相似文献   

7.
1. Concentration of atmospheric CO2 is predicted to double during the 21st century. However, quantitative effects of increased CO2 levels on natural herbivore–plant interactions are still little understood. 2. In this study, we assess whether increased CO2 quantitatively affects multiple defensive and nutritive traits in different leaf stages of cyanogenic wildtype lima bean plants (Phaseolus lunatus), and whether plant responses influence performance and choice behaviour of a natural insect herbivore, the Mexican bean beetle (Epilachna varivestis). 3. We cultivated lima bean plants in climate chambers at ambient, 500, 700, and 1000 ppm CO2 and analysed cyanogenic precursor concentration (nitrogen‐based defence), total phenolics (carbon‐based defence), leaf mass per area (LMA; physical defence), and soluble proteins (nutritive parameter) of three defined leaf age groups. 4. In young leaves, cyanide concentration was the only parameter that quantitatively decreased in response to CO2 treatments. In intermediate and mature leaves, cyanide and protein concentrations decreased while total phenolics and LMA increased. 5. Depending on leaf stage, CO2‐mediated changes in leaf traits significantly affected larval performance and choice behaviour of adult beetles. We observed a complete shift from highest herbivore damage in mature leaves under natural CO2 to highest damage of young leaves under elevated CO2. Our study shows that leaf stage is an essential factor when considering CO2‐mediated changes of plant defences against herbivores. Since in the long run preferred consumption of young leaves can strongly affect plant fitness, variable effects of elevated CO2 on different leaf stages should receive highlighted attention in future research.  相似文献   

8.
The ability of plants to recover from herbivore damage and maintain their fitness depends on physiological mechanisms that are affected by the availability of resources such as carbon and soil nutrients. In this study, we explored the effects of increased carbon and nutrient availability on the response of rapid cycling Brassica rapa to damage by the generalist herbivore, Trichoplusia ni (Noctuidae), in a greenhouse experiment. Using fruit mass as an estimate of plant fitness, we tested three physiological models, which predict either an increase or a decrease of tolerance to herbivory with increasing resource availability. We used leaf demography to examine some plausible mechanisms through which resource availability may affect tolerance. Our results contradict all models, and, rather, they support a more complicated view of the plasticity of resource uptake and allocation than the ones considered by the models tested. Fruit mass was negatively affected by herbivore damage only under elevated CO2, and only for certain harvest dates. Increased CO2 had no effect on the number of leaf births, but it decreased leaf longevity and the total number of leaves on a plant. Nutrient addition increased the number of leaf births, leaf longevity and the total number of leaves on a plant. We conclude that a shortening of the life span of the plants, brought about by elevated CO2, was responsible for a higher susceptibility of plants to herbivore damage under high CO2 concentration.  相似文献   

9.
Plant defences vary in space and time, which may translate into specific herbivore‐foraging patterns and feeding niche differentiation. To date, little is known about the effect of secondary metabolite patterning on within‐plant herbivore foraging. We investigated how variation in the major maize secondary metabolites, 1,4‐benzoxazin‐3‐one derivatives (BXDs), affects the foraging behaviour of two leaf‐chewing herbivores. BXD levels varied substantially within plants. Older leaves had higher levels of constitutive BXDs while younger leaves were consistently more inducible. These differences were observed independently of plant age, even though the concentrations of most BXDs declined markedly in older plants. Larvae of the well‐adapted maize pest Spodoptera frugiperda preferred and grew better on young inducible leaves irrespective of plant age, while larvae of the generalist Spodoptera littoralis preferred and tended to grow better on old leaves. In BXD‐free mutants, the differences in herbivore weight gain between old and young leaves were absent for both species, and leaf preferences of S. frugiperda were attenuated. In contrast, S. littoralis foraging patterns were not affected. In summary, our study shows that plant secondary metabolites differentially affect performance and foraging of adapted and non‐adapted herbivores and thereby likely contribute to feeding niche differentiation.  相似文献   

10.
First, we report the results of the longest‐known field study (9 years) to examine the effects of elevated carbon dioxide (CO2) on leaf miner densities in a scrub‐oak community at Kennedy Space Center, Florida. Here, the densities of all leaf miner species (6) on all host species (3) were lower in every year in elevated CO2 than they were in ambient CO2. Second, meta‐analyses were used to review the effects of elevated CO2 on both plants (n=59 studies) and herbivores (n=75 studies). The log of the response ratio was chosen as the metric to calculate effect sizes. Results showed that elevated CO2 significantly decreased herbivore abundance (−21.6%), increased relative consumption rates (+16.5%), development time (+3.87%) and total consumption (+9.2%), and significantly decreased relative growth rate (−8.3%), conversion efficiency (−19.9%) and pupal weight (−5.03%). No significant differences were observed among herbivore guilds. Host plants growing under enriched CO2 environments exhibited significantly larger biomass (+38.4%), increased C/N ratio (+26.57%), and decreased nitrogen concentration (−16.4%), as well as increased concentrations of tannins (+29.9%) and other phenolics. Effects of changes on plant primary and secondary chemistry due to elevated CO2 and consequences for herbivore growth and development are discussed.  相似文献   

11.
Sap-feeding insects such as aphids are the only insect herbivores that show positive responses to elevated CO2. Recent models predict that increased nitrogen will increase aphid population size under elevated CO2, but few experiments have tested this idea empirically. To determine whether soil nitrogen (N) availability modifies aphid responses to elevated CO2, we tested the performance of Macrosiphum euphorbiae feeding on two host plants; a C3 plant (Solanum dulcamara), and a C4 plant (Amaranthus viridis). We expected aphid population size to increase on plants in elevated CO2, with the degree of increase depending on the N availability. We found a significant CO2× N interaction for the response of population size for M. euphorbiae feeding on S. dulcamara: aphids feeding on plants grown in ambient CO2, low N conditions increased in response to either high N availability or elevated CO2. No population size responses were observed for aphids infesting A. viridis. Elevated CO2 increased plant biomass, specific leaf weight, and C : N ratios of the C3 plant, S. dulcamara but did not affect the C4 plant, A. viridis. Increased N fertilization significantly increased plant biomass, leaf area, and the weight : height ratio in both experiments. Elevated CO2 decreased leaf N in S. dulcamara and had no effect on A. viridis, while higher N availability increased leaf N in A. viridis and had no effect in S. dulcamara. Aphid infestation only affected the weight : height ratio of S. dulcamara. We only observed an increase in aphid population size in response to elevated CO2 or increased N availability for aphids feeding on S. dulcamara grown under low N conditions. There appears to be a maximum population growth rate that M. euphorbiae aphids can attain, and we suggest that this response is because of intrinsic limits on development time and fecundity.  相似文献   

12.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

13.
This study explored consumption of a generalist herbivore feeding on leaf tissue of various plant species of a calcareous grassland, and tested whether consumption levels and preferences changed when plants were exposed to 5 years of in situ CO2 enrichment. The first part of this experiment tested whether the consumption patterns of slugs (Deroceras reticulatum) observed in single-species feeding tests were altered when slugs were given a choice of food sources. Overall consumption increased 270% when slugs were given a choice, and they preferred having a choice of food sources more than they preferred having any one food source. Surprisingly, slugs consumed fewer legumes and grasses and more non-leguminous forbs when given a choice. In the second part of this experiment, feeding behaviors of slugs in response to elevated CO2 were investigated by feeding them leaves of two legumes, one grass, and a non-leguminous forb (Trifolium medium, Lotus corniculatus, Bromus erectus, and Sanguisorba minor, respectively) in two or four species combinations. In the leguminous species mix, the non-leguminous species mix, and the combined mix (legumes and non-legumes), neither overall consumption by herbivores nor species preference was significantly altered by long-term CO2 enrichment. In the combined species mix, slugs preferred legumes to non-legumes (P=0.012) and exhibited a weak functional group preference shift from non-legumes to legumes (P=0.089) in response to CO2 enrichment. This is the first time such a shift has been observed, and provides evidence that there may be multiple herbivore responses to rising atmospheric CO2 concentrations. Numerous single-species feeding tests using insects have shown that consumption by herbivores may increase when herbivores are fed plants grown in enriched CO2 atmospheres. This study clearly demonstrates the limited applicability of non-choice feeding trials to generalist herbivores in species-rich communities. Received: 19 August 1999 / Accepted: 20 April 2000  相似文献   

14.
The effects of elevated carbon dioxide on plant–herbivore interactions have been summarized in a number of narrative reviews and metaanalyses, while accompanying elevation of temperature has not received sufficient attention. The goal of our study is to search, by means of metaanalysis, for a general pattern in responses of herbivores, and plant characteristics important for herbivores, to simultaneous experimental increase of carbon dioxide and temperature (ECET) in comparison with both ambient conditions and responses to elevated CO2 (EC) and temperature (ET) applied separately. Our database includes 42 papers describing studies of 31 plant species and seven herbivore species. Nitrogen concentration and C/N ratio in plants decreased under both EC and ECET treatments, whereas ET had no significant effect. Concentrations of nonstructural carbohydrates and phenolics increased in EC, decreased in ET and did not change in ECET treatments, whereas terpenes did not respond to EC but increased in both ET and ECET; leaf toughness increased in both EC and ECET. Responses of defensive secondary compounds to treatments differed between woody and green tissues as well as between gymnosperm and angiosperm plants. Insect herbivore performance was adversely affected by EC, favoured by ET, and not modified by ECET. Our analysis allowed to distinguish three types of relationships between CO2 and temperature elevation: (1) responses to EC do not depend on temperature (nitrogen, C/N, leaf toughness, phenolics in angiosperm leaves), (2) responses to EC are mitigated by ET (sugars and starch, terpenes in needles of gymnosperms, insect performance) and (3) effects emerge only under ECET (nitrogen in gymnosperms, and phenolics and terpenes in woody tissues). This result indicates that conclusions of CO2 elevation studies cannot be directly extrapolated to a more realistic climate change scenario. The predicted negative effects of CO2 elevation on herbivores are likely to be mitigated by temperature increase.  相似文献   

15.
Surprisingly little research has been published on the responses to elevated [CO2] at the community level, where herbivores can select their preferred food. We investigated the combined effects of atmospheric [CO2] and herbivory on synthesised plant communities growing on soils of different fertility. Factorial combinations of two [CO2] (350 or 700 l l−1), two fertility (fertilised or non-fertilised), and two herbivory (herbivores present or absent) treatments were applied to a standard mixture of seven fast- and eight slow-growing plants in outdoor microcosms. The herbivores used were the grain aphid (Sitobion avenae) and the garden snail (Helix aspersa). We measured plant biomass, foliar nitrogen and soluble tannin concentration, aphid fecundity, and snail growth, fecundity, and feeding preferences over one growing season. Elevated [CO2] did not have a significant impact on (1) the combined biomass of fast-growing or slow-growing plants, (2) herbivore feeding preferences, or (3) herbivore fitness. There was, however, a significant biomass increase of Carex flacca (which represented in all cases less than 5% of total live biomass), and some chemical changes in unpalatable plants under elevated [CO2]. The herbivory treatment significantly increased the biomass of slow-growing plants over fast-growing plants, whereas fertilisation significantly increased the abundance of fast-growing plants over slow-growing plants. Predictions on the effects of elevated [CO2] based on published single-species experiments were not supported by the results of this microcosm study. Received: 30 November 1997 / Accepted: 24 July 1998  相似文献   

16.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

17.
Few studies have investigated how tree species grown under elevated CO2 and elevated temperature alter the performance of leaf‐feeding insects. The indirect effects of an elevated CO2 concentration and temperature on leaf phytochemistry, along with potential direct effects on insect growth and consumption, may independently or interactively affect insects. To investigate this, we bagged larvae of the gypsy moth on leaves of red and sugar maple growing in open‐top chambers in four CO2/temperature treatment combinations: (i) ambient temperature, ambient CO2; (ii) ambient temperature, elevated CO2 (+ 300 μL L?1 CO2); (iii) elevated temperature (+ 3.5°C), ambient CO2; and (iv) elevated temperature, elevated CO2. For both tree species, leaves grown at elevated CO2 concentration were significantly reduced in leaf nitrogen concentration and increased in C: N ratio, while neither temperature nor its interaction with CO2 concentration had any effect. Depending on the tree species, leaf water content declined (red maple) and carbon‐based phenolics increased (sugar maple) on plants grown in an enriched CO2 atmosphere. The only observed effect of elevated temperature on leaf phytochemistry was a reduction in leaf water content of sugar maple leaves. Gypsy moth larval responses were dependent on tree species. Larvae feeding on elevated CO2‐grown red maple leaves had reduced growth, while temperature had no effect on the growth or consumption of larvae. No significant effects of either temperature or CO2 concentration were observed for larvae feeding on sugar maple leaves. Our data demonstrate strong effects of CO2 enrichment on leaf phytochemical constituents important to folivorous insects, while an elevated temperature largely has little effect. We conclude that alterations in leaf chemistry due to an elevated CO2 atmosphere are more important in this plant–folivorous insect system than either the direct short‐term effects of temperature on insect performance or its indirect effects on leaf chemistry.  相似文献   

18.
Rising atmospheric carbon dioxide (CO2) concentration is expected to change plant tissue quality with important implications for plant–insect interactions. Taking advantage of canopy access by a crane and long‐term CO2 enrichment (530 μ mol mol?1) of a natural old‐growth forest (web‐free air carbon dioxide enrichment), we studied the responses of a generalist insect herbivore feeding in the canopy of tall trees. We found that relative growth rates (RGR) of gypsy moth (Lymantria dispar) were reduced by 30% in larvae fed on high CO2‐exposed Quercus petraea, but increased by 29% when fed on high CO2‐grown Carpinus betulus compared with control trees at ambient CO2 (370 μ mol mol?1). In Fagus sylvatica, there was a nonsignificant trend for reduced RGR under elevated CO2. Tree species‐specific changes in starch to nitrogen ratio, water, and the concentrations of proteins, condensed and hydrolyzable tannins in response to elevated CO2 were identified to correlate with altered RGR of gypsy moth larvae. Our data suggest that rising atmospheric CO2 will have strong species‐specific effects on leaf chemical composition of canopy trees in natural forests leading to contrasting responses of herbivores such as those reported here. A future change in host tree preference seems likely with far‐ranging consequences for forest community dynamics.  相似文献   

19.
The hypothesis that plants grown under elevated CO2 allocate more carbon to the production of latex and C‐rich secondary compounds whereas nutrient addition counteracts this effect was tested. Two similar experiments were conducted in two different experimental facilities. In both facilities seedlings of Euphorbia lathyris were exposed to factorial combinations of two CO2 concentrations and two levels of nutrient availability for 2 months. The CO2 treatments and growth conditions differed substantially between these two experiments but treatment responses to elevated CO2 and fertilizer addition were remarkably similar, underlining the robustness of our findings. Elevated CO2 increased biomass to a greater extent in fertilized than in unfertilized plants and reduced the leaf biomass fraction by accelerating leaf senescence. Concentrations of non‐structural carbohydrates (NSC) increased in elevated CO2. However, this apparent carbon surplus did not feed into the whole plant latex pool. The latex harvest per leaf (?25%) and the concentration of latex‐related hydrocarbons (?20%) even decreased under elevated CO2 (both experiments P < 0.05). Fertilization reduced NSC concentrations (?25%) but neither affected latex yield per leaf nor the concentration of latex‐related hydrocarbons. It is concluded that latex and related hydrocarbons in CO2‐enriched plants are a negligible sink for excess carbon irrespective of nutrient status and thus, vigour of growth.  相似文献   

20.
Folivorous insect responses to elevated CO2-grown tree species may be complicated by phytochemical changes as leaves age. For example, young expanding leaves in tree species may be less affected by enriched CO2-alterations in leaf phytochemistry than older mature leaves due to shorter exposure times to elevated CO2 atmospheres. This, in turn, could result in different effects on early vs. late instar larvae of herbivorous insects. To address this, seedlings of white oak (Quercus alba L.), grown in open-top chambers under ambient and elevated CO2, were fed to two important early spring feeding herbivores; gypsy moth (Lymantria dispar L.), and forest tent caterpillar (Malacosoma disstria Hübner). Young, expanding leaves were presented to early instar larvae, and older fully expanded or mature leaves to late instar larvae. Young leaves had significantly lower leaf nitrogen content and significantly higher total nonstructural carbohydrate:nitrogen ratio as plant CO2 concentration rose, while nonstructural carbohydrates and total carbon-based phenolics were unaffected by plant CO2 treatment. These phytochemical changes contributed to a significant reduction in the growth rate of early instar gypsy moth larvae, while growth rates of forest tent caterpillar were unaffected. The differences in insect responses were attributed to an increase in the nitrogen utilization efficiency (NUE) of early instar forest tent caterpillar larvae feeding on elevated CO2-grown leaves, while early instar gypsy moth larval NUE remained unchanged among the treatments. Later instar larvae of both insect species experienced larger reductions in foliage quality on elevated CO2-grown leaves than earlier instars, as the carbohydrate:nitrogen ratio of leaves substantially increased. Despite this, neither insect species exhibited changes in growth or consumption rates between CO2 treatments in the later instar. An increase in NUE was apparently responsible for offsetting reduced foliar nitrogen for the late instar larvae of both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号