首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
香蕉上的镰孢菌种类及其系统发育关系(英文)   总被引:1,自引:0,他引:1  
镰孢菌属真菌是香蕉上的重要病原菌,主要引起香蕉枯萎病以及香蕉冠腐病,在我国已明确引起香蕉枯萎病的病原为尖孢镰孢古巴专化型 Fusarium oxysporum f. sp. cubense(FOC)1号和4号生理小种,但是引起香蕉冠腐病的镰孢菌种类还未明确。为了解香蕉上镰孢菌在种间及种内水平上的多样性,2008–2011 年间作者从华南地区不同的水果市场及香蕉果园采集香蕉样品90份,分离得到143株镰孢菌。通过形态学观察及基于 EF-1α基因的系统进化分析鉴定出10种镰孢菌,即F. oxysporum、F. solani、F. camptoceras、F. pallidoroseum、F. stiloides、F. chlamydosporum、F.verticillioides、F. proliferatum、F. concentricum、F. sacchari,以及藤仓赤霉复合种(Gibberella fujikuroi species complex,GFC)中 3 个未定名的类群。轮纹镰孢 F. concentricum 及甘蔗镰孢 F.sacchari 是香蕉果实中最常见种,前菌为我国首次报道,后菌是首次报道与香蕉有关。对从香蕉上分离的藤仓赤霉复合种(GFC)及尖孢镰孢复合种(FOSC)的EF-1α序列进行了系统发育分析,其GFC中的27个菌株组成的单系群可分为7个不同的亚群,分别为 F.verticillioides、F. proliferatum、F. concentricum、F. sacchari 以及3个没有描述过的菌系 Fusarium sp. 1、Fusarium sp.2和 Fusarium sp.3;FOSC中的50个菌株形成2大分枝共12个谱系,分离自我国华南地区的21株尖孢镰孢形成7个谱系,其中 13株已知的香蕉枯萎病病原菌分布在3个谱系中,我国大陆的香蕉枯萎病病原菌菌株与来源于台湾地区及东南亚的菌株亲缘关系较近,FOC1号生理小种的遗传分化大于4号生理小种,FOC 1号生理小种与分离自香蕉果实上的尖孢镰孢菌的亲缘关系比与FOC 4号生理小种的亲缘关系更近。研究结果表明,我国香蕉上存在着丰富的镰孢菌种类,而且种内遗传多样性丰富。  相似文献   

2.
Dubey SC  Singh SR 《Mycopathologia》2008,165(6):389-406
Virulence analysis of 64 isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt collected from major chickpea growing states of India on 14 varieties, including 10 international differentials revealed that the isolates from each state were highly variable. Based on the reactions on international differentials, more than one race was found to be prevalent in every state. Majority of the isolates were not matched with the race specific reactions. Therefore, some of the cultivars, namely, GPF 2, DCP 92-3, and KWR 108 should be included as new differentials to obtain clear-cut differential responses. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and simple sequence repeat (SSR) markers were used to assess the genetic diversity of these isolates. Unweighted paired group method with arithmetic average (UPGMA) cluster analysis was used to divide the isolates into distinct clusters. The clusters generated by RAPD grouped all isolates into three categories at 25% genetic similarity and into two major categories at 30% genetic similarity. ISSR and SSR analyses also grouped all the isolates into two major categories. Majority of the isolates from Punjab and a few from Rajasthan were grouped in one category while the isolates from all other states were grouped in another suggesting the existence of diverse genetic populations of the pathogen at the same location. Some of the RAPD (OPM 6, OPI 9, P 17, OPN 4, OPF 1, P 17, P 21, and SC 1), ISSR (ISSR 7, ISSR 11, and ISSR 12) and SSR (MB 17) markers clearly distinguished area specific isolates.  相似文献   

3.
4.
基于RAPD、ISSR和AFLP对西瓜枯萎病菌遗传多样性的评价   总被引:7,自引:0,他引:7  
利用RAPD、ISSR和AFLP分子标记技术对50个西瓜枯萎病菌株进行了分析。结果表明,21个RAPD引物、21个ISSR引物和21对AFLP引物分别对供试菌株扩增出113、134和389条带,三种分子标记的遗传相似系数比较一致,均可揭示西瓜枯萎病菌的遗传变异特点。三种分子标记产生的聚类分析结果存在一定差异,其中RAPD类群与生理小种和地理来源之间均不存在明显关系;而AFLP和ISSR类群与生理小种之间存在一定相关性,与菌株的地理来源关系不明显。  相似文献   

5.
利用RAPD、ISSR和AFLP分子标记技术对50个西瓜枯萎病菌株进行了分析。结果表明,21个RAPD引物、21个ISSR引物和21对AFLP引物分别对供试菌株扩增出113、134和389条带,三种分子标记的遗传相似系数比较一致,均可揭示西瓜枯萎病菌的遗传变异特点。三种分子标记产生的聚类分析结果存在一定差异,其中RAPD类群与生理小种和地理来源之间均不存在明显关系;而AFLP和ISSR类群与生理小种之间存在一定相关性,与菌株的地理来源关系不明显。  相似文献   

6.
Safflower wilt, caused by Fusarium oxysporum f. sp. carthami (Foc) is a major limiting factor for safflower (Carthamus tinctorius) production worldwide. In India alone, about 40–80% disease incidence has been reported. A rapid, efficient, specific, and sensitive diagnostic technique for Foc is therefore crucial to manage Fusarium wilt of safflower. Twenty-five isolates of F. oxysporum formae speciales infecting other crops, 17 isolates of Fusarium spp. and seven isolates of other fungal pathogens of safflower along with 75 Foc isolates were used for identification of band specific to Foc using inter-simple sequence repeat (ISSR) analysis. Out of 70 ISSR primers, the one that specifically amplified a 490 bp fragment from all the Foc isolates was selected. Sequence of the amplified fragment was utilized to design sequence characterized amplified region (SCAR) primers (FocScF/FocScR). The primer pair unambiguously and exclusively amplified a DNA fragment of approximately 213 bp in all the 75 Foc isolates. The primer set was able to detect as low as 10 pg of Foc genomic DNA using conventional PCR, while the SCAR primers when coupled with real-time qPCR demonstrated detection limits of 1 pg for Foc genomic DNA and 1000 conidia/g for soil. The assay enabled reliable diagnosis of Foc DNA in contaminated safflower fields and expedited Foc detection at 72 h post inoculation in asymptomatic seedlings. This method facilitates quick and precise detection of Foc in plant and soil samples and can be exploited for timely surveillance and sustainable management of the disease.  相似文献   

7.
Molecular approaches for the assessment of intraspecific diversity within an economically important plant pathogen were compared with traditional physiological methods (vegetative compatibility testing). The vegetative compatibility groups (VCGs) of 14 isolates of Fusarium oxysporum f.sp. cubense (FOC) from Kenya were first assessed using nitrate non-utilizing mutants. Nine of these isolates, from different areas of the country, were compatible with one or more of VCGs 0124, 0125, 0128 and 01220, i.e. they formed a single clonal lineage. Three isolates, all originating from the banana growing district of Kisii, were compatible with the VCG 01212 and formed a second distinct clonal lineage. Mutants could not be recovered from one isolate (62) and two isolates (27 and 30) were not vegetatively compatible with any of the VCG testers and may represent two novel VCGs. Polymerase chain reaction (PCR) fingerprinting, especially when using the M13 derived primer, was found to produce banding patterns that correlated with clonal lineage and also distinguished isolates 27 and 30 when analysed by unweighted pair group method analysis and principle co-ordinate analysis. This approach also distinguished FOC from F. oxysporum IMI350438 isolated from Triticum sp. and from isolates of Colletotrichum gloeosporioides . Total protein profiles were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and although clonal lineages were not separated, isolates 27 and 30 were again distinguishable and FOC produced a different profile to F. oxysporum (IMI 350438) and C. gloeosporioides.  相似文献   

8.
Verticillium dahliae is one of the most important pathogens causing Verticillium wilt. We studied the characterisation of the genetic relationship between virulence, vegetative compatibility groups (VCGs) and inter-simple sequence repeat (ISSR). A total of 48 V. dahliae isolates, in which 16 are collected from different cotton growing regions in China and 4 isolates belonged to all known VCGs, are used. Half of them were found highly virulent. Mutants (565) were obtained using the nitrate non-utilising mutant. These mutants were grouped into three VCGs: VCG1 (27 isolates), VCG 2 (14 isolates) and VCG 3 (7 isolates). Use of ISSR indicated two main clusters that were related to VCG and virulence. Genetic diversity lineages were obviously correlated to VCGs and ISSRs according to their geographical origin, virulence and ISSR genetic variation. This study could be useful to design and develop effective management strategies beside for quarantine purposes on Verticillium wilt control.  相似文献   

9.
Genetic variability among isolates of Fusarium oxysporum f. sp. cepae was obtained from different onion-growing areas of Tamil Nadu, India. Random amplified polymorphic DNA (RAPD) analysis was carried out using 12 random primers, each of them consisting of 10 base pairs. Four out of the 12 primers were differentiated between some of the tested F. oxysporum f. sp. cepae isolates. Analysis of the genetic coefficient matrix derived from the scores of RAPD profile showed that minimum and maximum per cent similarities among the F. oxysporum f. sp. cepae isolates were in the range of 14–85%. Cluster analysis, using the unweighted pair-group method with arithmetic average, clearly separated the isolates into two clusters (A and B) confirming the genetic diversity among the isolates of F. oxysporum f. sp. cepae from onion.  相似文献   

10.
由尖孢镰孢菌古巴专化型Fusarium oxysporum f. sp. cubense, Foc引起的香蕉枯萎病是香蕉生产上的毁灭性病害,自1996年以来已对我国华南地区香蕉生产造成了严重危害。传统上香蕉枯萎病菌生理小种的鉴定主要采用人工接种鉴别寄主尔后测定病菌致病性的方法,但实验周期长,且受季节影响。以来自澳大利亚的香蕉枯萎病菌生理小种1号(BW1)、2号(Race 2)、3号(Race 3)以及亚热带4号(BW4)为对照,对分离自我国华南地区主要香蕉产区(广东、广西、海南、福建等省区)的14株香蕉枯萎病菌的单孢菌株进行致病性测定,并结合热带4号小种(TR4)和亚热带4号小种(ST4)的分子特异检测方法,确定其生理小种类型;同时,利用ITS、TEF-1α、IGS、histone H3、β-tubulin等 5个主要用于镰孢菌系统发育学研究的基因,研究不同地区不同来源的Foc菌株之间的亲缘关系及其与非病原尖孢镰孢菌的关系,并评价这5个基因在香蕉枯萎病菌生理小种鉴定上的应用价值。研究结果表明:(1)来源于我国华南地区的4号小种主要为热带4号小种;(2)TEF-1α、IGS、histone H3等3个基因片段能够将Foc中不同生理小种的菌株划分成不同的系统发育谱系,与致病性测定的结果具有对应关系,也能较好地反映尖孢镰孢菌种内菌株的亲缘关系,可用于香蕉枯萎病菌生理小种鉴定;(3)我国Foc 1号生理小种的遗传多样性高于4号生理小种,Foc 1号生理小种的菌系与来自香蕉果实上的非病原尖孢镰孢菌的亲缘关系比其与Foc 4号生理小种的菌系的亲缘关系更近。  相似文献   

11.
Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype.  相似文献   

12.

Background

Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India.

Results

We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected.

Conclusion

The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-454) contains supplementary material, which is available to authorized users.  相似文献   

13.
Genetic variation among isolates of F. oxysporum f.sp. cubense (Foc) was analysed using a DNA amplification fingerprinting (DAF) system modified to improve reproducibility and transportability. This analysis was done after determining the widest tolerance range (or 'window of reproducibility') for each component in amplification reaction. Reproducible polymerase chain reactions (PCRs) were achieved with between 25 and 250 ng of template DNA, 9–15 μM primer, 4–6 mM MgCl2 and 2–4 units of Stoffel Fragment enzyme. For experimental work we used the middle value of these ranges which allowed at least 20% error tolerance for each component. Similarly, thermocycling and electrophoresis conditions were also improved. Manual scoring of the DNA fingerprints was compared to analysis of scanned gel images using the Gel Compar program (Applied Maths, Kortrijk, Belgium). The data were clustered by unweighted pair group method analysis (UPGMA) based on the Jaccard similarity coefficient. Isolates of Foc representing all known vegetative compatibility groups (VCGs) were examined and the genetic relationships between the VCGs were determined. Isolates of Foc were divided into two major groups with 30% genetic similarity. These optimized DNA amplification, thermocycling, and electrophoresis conditions were suitable for analysis of other organisms and should be applicable to other techniques that use arbitrary primers such as random amplified polymorphic DNA (RAPD) and arbitrarily primed-PCR (AP-PCR).  相似文献   

14.
15.
Plant Cell, Tissue and Organ Culture (PCTOC) - Fusarium wilt of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Several experimental...  相似文献   

16.
Genetic variation among the isolates of Fusarium oxysporum f. sp. ciceris, the causal agent of chickpea wilt worldwide, was analysed using pathogenicity tests and molecular markers – random amplified polymorphic DNA (RAPD) and inter‐simple sequence repeat (ISSR) polymorphism. Hundred and eight isolates were obtained from diseased chickpea plants in 13 different provinces of Turkey, out of which 74 isolates were assessed using 30 arbitrary decamer primers and 20 ISSR primers. Unweighted pair‐grouped method by arithmetic average cluster analysis of RAPD, ISSR and RAPD + ISSR datasets provided a substantially similar discrimination among Turkish isolates and divided into three major groups. Group 1, 2 and 3 consisted of 41, 18 and 15 isolates, respectively. These methods revealed a considerable genetic variation among Turkish isolates, but no correlation with regard to the clustering of isolates from different geographic regions. Analysis of molecular variance confirmed that most genetic variability resulted from the differences among isolates within regions. Our results also indicated that the low‐genetic differentiation (FST) and high gene flow (Nm) among populations had a significant effect on the emergence and evolutionary development of F. oxysporum f. sp. ciceris. This is the first report on genetic diversity and population structure of F. oxysporum isolates on chickpea in Turkey.  相似文献   

17.
18.
香蕉枯萎病菌Fow1基因的克隆及序列分析   总被引:2,自引:0,他引:2  
为了解Fow1基因在尖镰刀菌古巴专化型侵染香蕉过程中的作用,及其与尖镰刀菌古巴专化型生理小种1号和生理小种4号之间的致病力差异的关系,采用PCR和RT-PCR方法扩增了2个生理小种的Fow1基因,并对扩增产物进行了克隆测序及相似序列搜索和比对,还对基因编码的蛋白进行了结构预测和功能分析。研究结果表明2个生理小种Fow1基因开放阅读框均为957bp,编码318个氨基酸,基因序列和氨基酸序列差异小,而且两个生理小种Fow1基因所编码的蛋白均具有酵母线粒体载体蛋白典型的结构特征,推测Fow1基因可能为香蕉枯萎病菌在香蕉组织中定殖所必需。从Fow1基因序列及其编码蛋白的氨基酸序列看,2个生理小种致病力的差异与Fow1基因并无明显对应关系,这为进一步研究Fow1基因功能奠定了基础。  相似文献   

19.
Inter‐simple sequence repeat (ISSR) analysis and aggressiveness assays were used to investigate genetic variability within a global collection of Fusarium culmorum isolates. A set of four ISSR primers were tested, of which three primers amplified a total of 37 bands out of which 30 (81%) were polymorphic. The intraspecific diversity was high, ranging from four to 28 different ISSR genotypes for F. culmorum depending on the primer. The combined analysis of ISSR data revealed 59 different genotypes clustered into seven distinct clades amongst 75 isolates of F. culmorum examined. All the isolates were assayed to test their aggressiveness on a winter wheat cv. ‘Armada’. A significant quantitative variation for aggressiveness was found among the isolates. The ISSR and aggressiveness variation existed on a macro‐ as well as micro‐geographical scale. The data suggested a long‐range dispersal of F. culmorum and indicated that this fungus may have been introduced into Canada from Europe. In addition to the high level of intraspecific diversity observed in F. culmorum, the index of multilocus association calculated using ISSR data indicated that reproduction in F. culmorum cannot be exclusively clonal and recombination is likely to occur.  相似文献   

20.
Safflower (Carthamus tinctorious L.) is valued as a source of high quality vegetable oil. 20 ISSR primers were used to assess the genetic diversity of 18 accessions of safflower collected from different geographical regions of Iran. The ISSR primers combinations revealed 57.6 % polymorphism, among 338 genetic loci amplified from the accessions. The sum of effective number of alleles and observed number of alleles were 29.76 and 36.77, respectively. To understand genetic relationships among these cultivars, Jacquards’ similarity coefficient and UPGMA clustering algorithm were applied to the ISSR marker data set. ISSR markers grouped accessions into two main clusters and four sub clusters. Also, the principal coordinate analysis (PCoA) supported the cluster analysis results. The results showed these genotypes have high genetic diversity, and can be used for alternative safflower breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号