首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
白蚁及其共生微生物协同降解植物细胞壁的机理一直被世界各国科学家所关注。培菌白蚁作为高等白蚁,相比低等食木白蚁具有更多样化的食性,其利用外共生系统“菌圃”,对多种植物材料进行处理。本文综述了菌圃微生物降解木质纤维素的研究进展,以期为深入研究菌圃中木质纤维素降解过程及其机制,并挖掘利用菌圃降解木质纤维素的能力及仿生模拟菌圃开发新的生物质利用系统提供参考。培 菌白蚁在其巢内利用由植物材料修建的多孔海绵状结构——“菌圃”来培养共生真菌鸡枞菌Termitomyces spp.,形成了独特的木质纤维素食物降解和消化策略,使木质纤维素在培菌白蚁及其共生微生物协同作用下被逐步降解。幼年工蚁取食菌圃上的共生真菌菌丝组成的小白球和老年工蚁觅得食物并排出粪便堆积到菌圃上成为上层菌圃。这一过程中,被幼年工蚁取食的共生真菌释放木质素降解酶对包裹在植物多糖外部的木质素屏障进行解聚。菌圃微生物(包括共生真菌)对解聚的木质素基团进一步降解,将多糖长链或主链剪切成短链,使菌圃基质自下而上被逐步降解。最后下层的老熟菌圃被老年工蚁取食,其中肠的内源酶系及后肠微生物将这些短链进一步剪切和利用。因此,蚁巢菌圃及其微生物是培菌白蚁高效转化利用木质纤维素的基础。化学层面的研究表明,菌圃能够实现对植物次生物质解毒和植 物纤维化学结构解构。对共生真菌相关酶系的研究显示可能其在菌圃的植物纤维化学结构和植物次生物质的降解中发挥了作用,但不同属共生真菌间其效率和具体功能不尽相同。而菌圃中的细菌是否发挥了作用和哪些细菌类群发挥了作用等仍有待进一步的研究。相比于低等食木白蚁利用其后肠共生微生物降解木质纤维素,培菌白蚁利用菌圃降解木质纤维素具有非厌氧和能处理多种类型食物两大优势,仿生模拟菌圃降解木质纤维素的机制对林地表面枯枝落叶的资源化利用具有重要意义。  相似文献   

2.
白蚁是大陆生态系统中木质纤维素降解的生力军,其肠道共生系统纤维素酶对纤维素的消化起到了关键的作用.本文概述了白蚁自身及其肠道共生微生物的纤维素水解系统的特点、相互关系以及相互作用的研究进展.  相似文献   

3.
低等白蚁肠道共生微生物的多样性及其功能   总被引:7,自引:0,他引:7  
低等白蚁肠道里存在着复杂的微生物区系,包括真核微生物鞭毛虫和原核生物,细菌及古细菌。低等白蚁的后肠以特别膨大的囊形胃及其氢氧浓度的明显梯度分布和丰富的微生物区系为特征,是白蚁进行木质纤维素消化的主要器官。后肠内的鞭毛虫能将纤维素水解并发酵为乙酸,二氧化碳和氢,为白蚁提供营养和能源。系统发育研究表明,低等白蚁肠道共生细菌的主要类群为白蚁菌群1、螺旋体、拟杆菌,低G C mol%含量的革兰氏阳性菌和紫细菌等。而古细菌主要为甲烷短杆菌属的产甲烷菌。共生原核生物与二氧化碳的还原和氮的循环等代谢有关。但肠道共生微生物的具体功能和作用机制还有待进一步的揭示。  相似文献   

4.
【目的】本研究旨在分析比较扩头蔡白蚁Tsaitermes ampliceps工蚁前中肠和后肠及其内容物的蛋白构成和表达差异,挖掘降解木质纤维素的相关酶和蛋白。【方法】通过扩头蔡白蚁工蚁的前中肠和后肠及其内容物蛋白的双向电泳,对高表达或高差异表达的47个蛋白点进行MALDI-TOF/MS测序,并进行生物信息学分析。【结果】测序分析发现,扩头蔡白蚁肠道及其内容物蛋白中有结构蛋白13个、调节蛋白9个、白蚁代谢相关蛋白10个、微生物代谢相关蛋白7个。经PD Quest分析发现,在前中肠和后肠有11个蛋白均高表达;仅在前中肠表达的蛋白有12个,主要是白蚁代谢相关蛋白和调节蛋白;仅在后肠表达的蛋白有8个,主要是微生物代谢相关蛋白。整个肠道内参与木质纤维素降解的相关酶有5个,分别是白蚁自身分泌的内源性纤维素酶,细菌产生的内切-β-1,4-葡聚糖酶和过氧化物歧化酶以及原生动物产生的GH11。【结论】白蚁对木质纤维素食物的降解主要在前中肠,后肠对降解产物进一步降解并进行微生物生长代谢。这些降解产物和微生物菌体蛋白为白蚁的肛哺提供营养成分。  相似文献   

5.
【目的】本研究旨在分析比较扩头蔡白蚁Tsaitermes ampliceps工蚁前中肠和后肠及其内容物的蛋白构成和表达差异,挖掘降解木质纤维素的相关酶和蛋白。【方法】通过扩头蔡白蚁工蚁的前中肠和后肠及其内容物蛋白的双向电泳,对高表达或高差异表达的47个蛋白点进行MALDI-TOF/MS测序,并进行生物信息学分析。【结果】测序分析发现,扩头蔡白蚁肠道及其内容物蛋白中有结构蛋白13个、调节蛋白9个、白蚁代谢相关蛋白10个、微生物代谢相关蛋白7个。经PD Quest分析发现,在前中肠和后肠有11个蛋白均高表达;仅在前中肠表达的蛋白有12个,主要是白蚁代谢相关蛋白和调节蛋白;仅在后肠表达的蛋白有8个,主要是微生物代谢相关蛋白。整个肠道内参与木质纤维素降解的相关酶有5个,分别是白蚁自身分泌的内源性纤维素酶,细菌产生的内切-β-1,4-葡聚糖酶和过氧化物歧化酶以及原生动物产生的GH11。【结论】白蚁对木质纤维素食物的降解主要在前中肠,后肠对降解产物进一步降解并进行微生物生长代谢。这些降解产物和微生物菌体蛋白为白蚁的肛哺提供营养成分。  相似文献   

6.
白蚁及共生微生物木质纤维素水解酶的种类   总被引:2,自引:2,他引:0  
相辉  周志华 《昆虫知识》2009,46(1):32-40
白蚁是热带生态系统重要的木质纤维素降解者。白蚁种类丰富,可分成高等白蚁和低等白蚁,食性也具有各自特点。白蚁自身可以产生纤维素酶,主要是GHF9的内切葡聚糖酶(EG),也有β-葡萄糖苷酶(GB)。低等白蚁共生的原虫中已发现丰富的纤维素酶基因,属于GHF5,7和45。同时还有其他相关功能基因,如木聚糖酶和果胶类物质水解酶。高等白蚁肠道中没有共生原虫。高等培菌白蚁可以利用共生蚁巢伞属真菌促进木质纤维素降解,真菌可以产生纤维素酶,果胶质水解酶类、木聚糖酶,同时还产生可能与木质素分解相关的一种漆酶,但是从分子水平,关于共生真菌纤维素水解酶的研究还较少。白蚁肠道已分离出许多具有木质纤维素降解能力的菌株,最近的研究也发现了大量细菌纤维素酶基因。白蚁-共生系统丰富的木质纤维素水解酶类为发展生物方法开发纤维素乙醇这一思路提供有价值的资源。  相似文献   

7.
蒋宇彤  张硕  林子佳  倪金凤 《微生物学报》2020,60(12):2635-2649
木质纤维素是地球上最丰富的有机聚合物,白蚁是古老但进化最成功的高效木质纤维素降解者之一。了解白蚁降解高度抗性植物聚合物的机制对工业上生物质能源转化和生物仿生设计有重要的借鉴和指导价值。白蚁和其共生微生物产生的木质纤维素酶在其转化利用木质纤维素上发挥着重要作用。本文从来源作用方面对白蚁自身及其肠道原虫、细菌和真菌产生的纤维素酶、木聚糖酶和漆酶等酶研究概况进行了总结,对其存在的问题和前景进行了展望。本综述有助于全面了解白蚁消化系统木质纤维素酶的基因种类、来源、分布、表达以及酶活性和功能。  相似文献   

8.
白蚁是木质纤维素的主要降解者,在森林生态系统碳氮循环过程中发挥着重要作用。白蚁肠道共生微生物主要包括原生生物、细菌、古菌和真菌。在白蚁对木质纤维素进行降解、发酵,从而产生乙酸、氢气和甲烷以及对氮的固定过程中,白蚁肠道共生微生物起着重要的作用。本文对白蚁肠道微生物的研究方法进行总结,概述了各种方法的优缺点,同时对肠道微生物的研究进展进行了总结,以期为白蚁肠道微生物的进一步研究和利用提供参考。  相似文献   

9.
黄翅大白蚁(Macrotermes barneyi)具有高效降解木质纤维素的能力,其后肠内存在着丰富的共生微生物。采用活性电泳和变形梯度凝胶电泳的方法对黄翅大白蚁后肠降解滤纸微生物群落进行分析。活性电泳实验证实了此微生物群落纤维素酶的存在(内切葡聚糖酶、β-葡萄糖苷酶和木聚糖酶),变形梯度凝胶电泳实验鉴定出微生物组的群落结构,即7种细菌和3种真菌。本研究初步阐明了黄翅大白蚁后肠内与滤纸降解相关的微生物种类,为进一步了解黄翅大白蚁纤维素的降解机制以及生物质资源的高效利用提供了理论基础。  相似文献   

10.
黄翅大白蚁( Macrotermes barneyi)具有高效降解木质纤维素的能力,其后肠内存在着丰富的共生微生物。采用活性电泳和变形梯度凝胶电泳的方法对黄翅大白蚁后肠降解滤纸微生物群落进行分析。活性电泳实验证实了此微生物群落纤维素酶的存在(内切葡聚糖酶、β葡萄糖苷酶和木聚糖酶),变形梯度凝胶电泳实验鉴定出微生物组的群落结构,即7种细菌和3种真菌。本研究初步阐明了黄翅大白蚁后肠内与滤纸降解相关的微生物种类,为进一步了解黄翅大白蚁纤维素的降解机制以及生物质资源的高效利用提供了理论基础。  相似文献   

11.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

12.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically ‘lower termites’ are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood‐feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus‐level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host‐specific distribution of the bacterial lineages in termite guts are best explained by diet‐related differences in the availability of microhabitats and functional niches.  相似文献   

13.
Zhou X  Smith JA  Oi FM  Koehler PG  Bennett GW  Scharf ME 《Gene》2007,395(1-2):29-39
Termites have developed cellulose digestion capabilities that allow them to obtain energy and nutrition from nutritionally poor food sources, such as lignocellulosic plant material and residues derived from it (e.g., wood and humus). Lower termites, which are equipped with both endogenous (i.e., of termite origin) and symbiotic cellulases, feed primarily on wood and wood-related materials. This study investigated cellulase gene diversity, structure, and activity in the lower termite, Reticulitermes flavipes (Kollar). We initially used a metagenomics approach to identify four genes encoding one endogenous and three symbiotic cellulases, which we refer to as Cell-1, -2, -3 and -4. These four genes encode proteins that share significant sequence similarity with known endoglucanases, exoglucanases and xylanases. Phylogenetic analyses further supported these inferred relationships by showing that each of the four cellulase proteins clusters tightly with respective termite, protozoan or fungal cellulases. Gene structure studies revealed that Cell-1, -3 and -4 are intron-free, while Cell-2 contains the first intron sequence to be identified from a termite symbiont cellulase. Quantitative real-time PCR (qRT-PCR) revealed that the endogenous Cell-1 gene is expressed exclusively in the salivary gland/foregut, whereas symbiotic Cell-2, -3, and -4 are highly expressed in the hindgut (where cellulolytic protists are harbored). Cellulase activity assays mapped the distribution pattern of endoglucanase, exoglucanase and xylanase activity throughout the R. flavipes digestive tract. Cellulase gene expression correlated well with the specific types of cellulolytic activities observed in each gut region (foregut+salivary gland, midgut and hindgut). These results suggest the presence of a single unified cellulose digestion system, whereby endogenous and symbiotic cellulases work sequentially and collaboratively across the entire digestive tract of R. flavipes.  相似文献   

14.
The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.  相似文献   

15.
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.  相似文献   

16.
Termites digest wood and other lignocellulosic substrates with the help of their intestinal microbiota. While the functions of the symbionts in the digestive process are slowly emerging, the origin of the bacteria colonizing the hindgut bioreactor is entirely unknown. Recently, our group discovered numerous representatives of bacterial lineages specific to termite guts in a closely related omnivorous cockroach, but it remains unclear whether they derive from the microbiota of a common ancestor or were independently selected by the gut environment. Here, we studied the bacterial gut microbiota in 34 species of termites and cockroaches using pyrotag analysis of the 16S rRNA genes. Although the community structures differed greatly between the major host groups, with dramatic changes in the relative abundances of particular bacterial taxa, we found that the majority of sequence reads belonged to bacterial lineages that were shared among most host species. When mapped onto the host tree, the changes in community structure coincided with major events in termite evolution, such as acquisition and loss of cellulolytic protists and the ensuing dietary diversification. UniFrac analysis of the core microbiota of termites and cockroaches and construction of phylogenetic tree of individual genus level lineages revealed a general host signal, whereas the branching order often did not match the detailed phylogeny of the host. It remains unclear whether the lineages in question have been associated with the ancestral cockroach since the early Cretaceous (cospeciation) or are diet-specific lineages that were independently acquired from the environment (host selection).  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号