首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Aim This paper presents a probabilistic method of pollen spectra analysis. The method relies on a pollen taxon characterization using biotic and abiotic plant attribute modes, and their occurrence in a given pollen spectrum at a specific site. This type of analysis can provide an interpretation, which can lead to the reconstruction of the biome and, to an extent, of the abiotic conditions at the site. Methods The analysis has been carried out at the European scale using data provided by the European Pollen Database for about 1000 sites. This dataset contains about 50,000 pollen spectra from the last 21 ka. In these spectra, each pollen taxon has been characterized by a set of 10 chosen attributes. These have been selected with regard to their relevance in biome reconstruction, but also on the basis of available literature. By using the probability of occurrence of each taxon in a given pollen spectrum, it is possible to calculate an affinity index for the spectrum to the attribute considered. To overcome difficulties caused by pollen identification in low diversified pollen spectra, a co‐occurrence concept has been used to give more information. Results The method has been validated on a set of 1327 modern surface samples by comparing the results to the major climatic and environmental variables that control the distribution of the vegetation. A reconstruction exercise on various characteristics of the plants was then carried out on a 6‐ka dataset. This confirmed previous studies by showing a strong dominance of deciduous forest over most of Europe, related to a milder climate than at present in the north and a wetter and colder climate than at present in the south. By analysing the change in pollen/seed dispersion strategies and the light requirement, we show that the history of vegetation dynamics in relation to human influences can be assessed using this method. Main conclusions Our results show that the probabilistic method is an objective tool for pollen assemblage analysis. It allows reconstruction of various characteristics of the vegetation at the continental and global scale for periods and sites with significantly different climate conditions. This method can also be used to compare maps of vegetation attributes for the validation of the new generalized dynamic ecosystems models.  相似文献   

2.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

3.
A biomization method, which objectively assigns individual pollen assemblages to biomes ( Prentice et al., 1996 ), was tested using modern pollen data from Japan and applied to fossil pollen data to reconstruct palaeovegetation patterns 6000 and 18,000 14C yr bp Biomization started with the assignment of 135 pollen taxa to plant functional types (PFTs), and nine possible biomes were defined by specific combinations of PFTs. Biomes were correctly assigned to 54% of the 94 modern sites. Incorrect assignments occur near the altitudinal limits of individual biomes, where pollen transport from lower altitudes blurs the local pollen signals or continuous changes in species composition characterizes the range limits of biomes. As a result, the reconstructed changes in the altitudinal limits of biomes at 6000 and 18,000 14C yr bp are likely to be conservative estimates of the actual changes. The biome distribution at 6000 14C yr bp was rather similar to today, suggesting that changes in the bioclimate of Japan have been small since the mid‐Holocene. At 18,000 14C yr bp the Japanese lowlands were covered by taiga and cool mixed forests. The southward expansion of these forests and the absence of broadleaved evergreen/warm mixed forests reflect a pronounced year‐round cooling.  相似文献   

4.
Aim  To demonstrate that incorporating the bioclimatic range of possible contributor plants leads to improved accuracy in interpreting the palaeoclimatic record of taxonomically complex pollen types.
Location  North Tropical Africa.
Methods  The geographical ranges of selected African plants were extracted from the literature and geo-referenced. These plant ranges were compared with the pollen percentages obtained from a network of surface sediments. Climate-response surfaces were graphed for each pollen taxon and each corresponding plant species.
Results  Several patterns can be identified, including taxa for which the pollen and plant distributions coincide, and others where the range limits diverge. Some pollen types display a reduced climate range compared with that of the corresponding plant species, due to low pollen production and/or dispersal. For other taxa, corresponding to high pollen producers such as pioneer taxa, pollen types display a larger climatic envelope than that of the corresponding plants. The number of species contained in a pollen taxon is an important factor, as the botanical species included in a taxon may have different geographical and climate distributions.
Main conclusions  The comparison between pollen and plant distributions is an essential step towards more precise vegetation and climate reconstructions in Africa, as it identifies taxa that have a high correspondence between pollen and plant distribution patterns. Our method is a useful tool to reassess biome reconstructions in Africa and to characterize accurately the vegetation and climate conditions at a regional scale, from pollen data.  相似文献   

5.
Grandjouan  G.  Cour  P.  Gros  R. 《Plant Ecology》2000,147(2):147-163
The relation between pollen and climate is commonly computed by regressing the climatical factor. The disadvantage of this method is that it does not respect the ordinal and intermittent nature of field data. This paper overcomes the artefacts created by this problem by using a probabilist calibration, that quantifies the ecological linkage between a taxon T and a factor with a general parameter, the probability PROX for an abundance A being confined near the rank F of the factor. Confining simulates the effect of the factor upon the concentration of presences and ordering of abundances, and calibrates the climatical behaviour of a taxon with the set of PROX for all possible pairs (A,F). It summarizes a behaviour with the probable position of each abundance A in the range of the factor. Calibration was applied to 130 pollen taxa observed in a network of 80 standardized annual aeropollinic spectra. Spectra were mostly from France, the rest being from a transect stretching from Sweden to Algeria. Spectra were characterized by the values of 10 climatic factors, as well as the presence and abundance of 130 pollen taxa. The influence of geographical climate differences upon pollen content in the atmosphere was quantified by comparing the spectra. Pairs from different localities but the same year were compared. The reliability of indicator taxa was tested by estimating the climate in the 80 spectra using calibration. For all the taxa observed in a spectrum, the envelope of confinings generally followed an unimodal gradient, whose mode was the probable position of the spectrum. Reliability of the estimate was measured by its accuracy, being the agreement between estimates and measures; and by its stability, being the agreement between two estimates from the same climate according to two different flora (the two halves of a spectrum for instance). Average accuracy was 72%, and average stability 87%.  相似文献   

6.
New detailed biome reconstructions are proposed in East Africa from modern pollen data derived from 150 sites located in northern Kenya (40 sites), north-western Uganda (51 sites) and southern Tanzania (59 new sites presented as pollen diagram), which are representative of the major vegetation associations occurring in seven phytogeographical regions, mosaics or centres of endemism. We use the standard biomisation method previously published for the African continent, but we reconsider the taxa assignment to plant functional types. We include in this approach all identified taxa (408) except aquatics, ferns and exotic taxa. The method is validated by comparison with local vegetation data and we show that 124 (82.6%) sites are assigned to the correct biome and that for all the biomes under investigation, the number of correct assignments always exceeds the number of incorrect ones. When an incorrect biome reconstruction occurs, mainly toward drier biomes, this is generally linked to the local open/degraded structure of the original vegetation or to the occurrence of a mosaic of open/closed vegetation. In turn, most of the reconstructions of more humid/closed biomes than the corresponding local vegetation (8.6%) remain unexplained. A comparison of our reconstructed biomes with the main East African vegetation types of White's map indicates that 121 (80.6%) sites are assigned to the correct biomes. However, the majority of sites are incorrectly reconstructed compared to Olson and IGBP maps from satellite data, mainly due to incorrect allocation of the land cover classes compared to the potential vegetation. The application of this method to our pollen data set demonstrates that modern pollen assemblages can successfully reconstruct the main modern East African vegetation types.  相似文献   

7.
Pollen data from China for 6000 and 18,000 14C yr bp were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north‐eastern and south‐western China. The 6000 14C yr bp map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid‐Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 14C yr bp map shows that steppe and even desert vegetation extended to the modern coast of eastern China at the last glacial maximum, replacing today’s temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43°N.  相似文献   

8.
Aim To produce a robust, comprehensive global biome reconstruction for the Middle Pliocene (c. 3.6–2.6 Ma), which is based on an internally consistent palaeobotanical data set and a state‐of‐the‐art coupled climate–vegetation model. The reconstruction gives a more rigorous picture of climate and environmental change during the Middle Pliocene and provides a new boundary condition for future general circulation model (GCM) studies. Location Global. Methods Compilation of Middle Pliocene vegetation data from 202 marine and terrestrial sites into the comprehensive GIS data base TEVIS (Tertiary Environmental Information System). Translation into an internally consistent classification scheme using 28 biomes. Comparison and synthesis of vegetation reconstruction from palaeodata with the outputs of the mechanistically based BIOME4 model forced by climatology derived from the HadAM3 GCM. Results The model results compare favourably with available palaeodata and highlight the importance of employing vegetation–climate feedbacks and the anomaly method in biome models. Both the vegetation reconstruction from palaeobotanical data and the BIOME4 prediction indicate a general warmer and moister climate for the Middle Pliocene. Evergreen taiga as well as temperate forest and grassland shifted northward, resulting in much reduced tundra vegetation. Warm‐temperate forests (with subtropical taxa) spread in mid and eastern Europe and tropical savannas and woodland expanded in Africa and Australia at the expense of deserts. Discrepancies which occurred between data reconstruction and model simulation can be related to: (1) poor spatial model resolution and data coverage; (2) uncertainties in delimiting biomes using climate parameters; or (3) uncertainties in model physics and/or geological boundary conditions. Main conclusions The new global biome reconstruction combines vegetation reconstruction from palaeobotanical proxies with model simulations. It is an important contribution to the further understanding of climate and vegetation changes during the Middle Pliocene warm interval and will enhance our knowledge about how vegetation may change in the future.  相似文献   

9.
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.  相似文献   

10.
Aim  To provide a test of the conservatism of a species' niche over the last 20,000 years by tracking the distribution of eight pollen taxa relative to climate type as they migrated across eastern North America following the Last Glacial Maximum (LGM).
Location  North America.
Methods  We drew taxon occurrence data from the North American pollen records in the Global Pollen Database, representing eight pollen types – all taxa for which ≥5 distinct geographic occurrences were available in both the present day and at the LGM (21,000 years ago ± 3000 years). These data were incorporated into ecological niche models based on present-day and LGM climatological summaries available from the Palaeoclimate Modelling Intercomparison Project to produce predicted potential geographic distributions for each species at present and at the LGM. The output for each time period was projected onto the 'other' time period, and tested using independent known occurrence information from that period.
Results  The result of our analyses was that all species tested showed general conservatism in ecological characteristics over the climate changes associated with the Pleistocene-to-Recent transition.
Main conclusions  This analysis constitutes a further demonstration of general and pervasive conservatism in ecological niche characteristics over moderate periods of time despite profound changes in climate and environmental conditions. As such, our results reinforce the application of ecological niche modelling techniques to the reconstruction of Pleistocene biodiversity distribution patterns, and to project the future potential distribution range of species in the face of global-scale climatic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号