首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
刘洪艳  袁媛  张姗  李凯强 《微生物学通报》2021,48(12):4521-4529
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。  相似文献   

2.
刘洪艳  袁媛  张姗  李凯强 《微生物学报》2021,61(6):1496-1506
【目的】在异化铁还原细菌培养体系中,通过外加电子穿梭体,分析电子穿梭体种类与浓度对细菌异化铁还原性质的影响。【方法】以一株发酵型异化铁还原细菌Clostridium butyricum LQ25为研究对象,设置水溶性介体蒽醌-2-磺酸钠和核黄素作为外加电子穿梭体。【结果】在氢氧化铁为电子受体、葡萄糖为电子供体培养条件下,不同浓度蒽醌-2-磺酸钠和核黄素对菌株LQ25异化铁还原效率影响具有显著性差异。外加蒽醌-2-磺酸钠浓度为0.5 mmol/L时,菌株累积产生Fe(Ⅱ)浓度最高,为12.95±0.08 mg/L,相比对照组提高88%。核黄素浓度为100mg/L时,菌株累积产生Fe(Ⅱ)浓度是11.06±0.04mg/L,相比对照组提高61%。外加电子穿梭体能够改变菌株LQ25发酵产物中丁酸和乙酸浓度,提高乙酸相对含量。【结论】蒽醌-2-磺酸钠和核黄素作为外加电子穿梭体能显著促进细菌异化铁还原效率,为揭示发酵型异化铁还原细菌胞外电子传递机制提供实验支持。  相似文献   

3.
将渤海沉积物进行厌氧培养,富集异化Fe(Ⅲ)还原混合菌群。在不同电子受体下,分析铁还原菌群异化还原Fe(Ⅲ)性质。以柠檬酸铁和氢氧化铁为电子受体培养体系,在培养12 h时,累积Fe(Ⅱ)浓度分别为(100.67±0.75)和(53.24±3.63)mg·L~(-1);当培养60h时,累积Fe(Ⅱ)浓度达到(118.95±1.47)和(119.74±3.96)mg·L~(-1)。这表明可溶性与不可溶性电子受体能够显著影响细菌异化Fe(Ⅲ)还原过程,而对累积Fe(Ⅲ)还原量影响不明显。通过高通量测序技术,分析不同电子受体下的异化Fe(Ⅲ)还原混合菌群多样性与优势菌组成。菌群多样性分析表明,以柠檬酸铁和氢氧化铁为电子受体时,菌群多样性Shannon指数分别是3.40和3.11,较对照组(Shannon指数2.07)高,表明培养体系中加入Fe(Ⅲ)能显著提高铁还原混合菌群多样性。异化Fe(Ⅲ)还原混合菌群在不同电子受体下优势菌主要是Clostridium_sensu_stricto和Romboutsia,属于梭菌目Clostridiales,这表明梭菌是参与Fe(Ⅲ)还原的优势菌。  相似文献   

4.
【目的】从海洋沉积物中富集获得硫酸盐还原菌群,改变pH值进行培养,分析pH值对硫酸盐还原性质的影响,明确菌群组成和进行硫酸盐还原功能基因预测,探究硫酸盐还原机制。【方法】分析硫酸盐还原菌群在不同pH值条件下的硫酸盐还原率,在此基础上,利用高通量测序技术和PICRUSt软件分析硫酸盐还原菌群优势菌组成及硫酸盐还原相关基因相对丰度。【结果】硫酸盐还原菌群在不同pH值培养条件下的生长和硫酸盐还原率出现显著变化(P<0.01),在pH 5.0时达到峰值,分别为0.34±0.01和96.52%±0.44%。高通量测序数据显示,pH 5.0时菌群丰富度和多样性最高,优势菌属为假单胞菌(Pseudomonas)和芽孢杆菌(Bacillus),相对丰度较高的基因为同化性硫酸盐还原相关基因。【结论】硫酸盐还原菌富集生长的最适pH 5.0,在此条件下的高硫酸盐还原率由同化性硫酸盐还原途径主导,为揭示硫酸盐还原机制提供了实验支持,并拓宽了硫酸盐还原菌实践应用方面的种质资源。  相似文献   

5.
异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性   总被引:1,自引:0,他引:1  
【目的】从黄河三角洲滨海湿地土壤中获得同时具备产氢、产电以及异化铁还原能力的多功能菌株。【方法】通过厌氧分离技术从黄河三角洲土壤中分离得到纯菌株,16S r RNA基因测序后与数据库已有序列进行比对。利用革兰氏染色及扫描电镜观察菌株形态,并用气相色谱(gas chromatography,GC)和液相色谱(high performance liquid chromatography,HPLC)检测其生理代谢底物和产物。通过添加不同形态铁氧化物检测该菌株Fe(Ⅲ)的还原能力。构建微生物燃料电池(Microbial fuel cells,MFCs)检测该菌株的电化学活性。【结果】16S r RNA基因序列比对发现其与双酶梭菌Clostridium bifermentans的相似性达97.99%。革兰氏染色结果显示为阳性菌。能够利用葡萄糖为底物发酵产生氢气、二氧化碳、乙酸和丁酸。Fe(Ⅲ)还原能力检测发现,其不仅可以还原柠檬酸铁(FeC_6H_5O_7)中可溶性的Fe(Ⅲ),还可以还原无定形铁水铁矿(FeOOH)和晶型纳米磁铁矿(Fe_3O_4)中的Fe(Ⅲ)。此外,经MFCs检测发现,该菌具有电化学活性,最大电流输出密度可达6.5 m A/m~2,且在0.15 V位置存在氧化峰。【结论】本研究从土壤中成功分离得到了一株同时具有产氢、产电以及异化铁还原能力的多功能梭菌菌株,保藏并命名为Clostridium bifermentans EZ-1。  相似文献   

6.
南大西洋中脊热液区异化铁还原微生物及其矿化产物分析   总被引:1,自引:0,他引:1  
李光玉  曾湘  邵宗泽 《微生物学报》2019,59(7):1295-1306
【目的】从深海热液区获取异化铁还原微生物(Dissimilatory iron reducing microorganisms,DIRM),分析其矿化速率和矿化产物,认识其参与的深海生物地球化学循环。【方法】以羟基氧化铁(FeOOH)为电子受体,以乙酸等简单有机物做电子供体,在60°C恒温厌氧条件下,对南大西洋中脊深海热液区硫化物样品中的DIRM进行富集、培养;采用扫描电镜(SEM)和透射电镜(TEM)、选区电子衍射(SAED)以及能谱仪(EDS)等方法对矿化产物进行形貌观察与成分分析。【结果】从2个硫化物样品中,共获得了139个铁还原培养物,它们均能将培养基中FeOOH (Fe3+90 mmol/L)转化为矿化产物。电镜下可见明显的晶体形态,以立方体形晶体为主,边长为5.0–20.0 nm;EDS分析表明,所有矿物晶体的主要元素为铁和氧,推测是由菱铁矿和磁铁矿组成的混合矿物。矿物晶体形成的时间差异较大,从3d到54d不等,多数培养物可在11 d到20 d内形成晶体。微生物多样性表明,培养物中优势菌主要为厚壁菌门(Firmicutes)和广古菌门(Euryarchaeota),包括一氧化碳胞菌(Carboxydocella)与脱硫肠状菌(Desulfotomaculum)近似新物种(16SrRNA基因同源性89%–91%)和广古菌地丸菌(Geoglobus)。【结论】热液区高温厌氧细菌与古菌可以利用简单有机物为电子供体进行铁还原,形成铁氧化物晶体。实验结果对于微生物参与铁元素的生物地球化学循环与矿物形成的潜力具有支持作用。然而它们是否参与了热液区铁元素的生物地球化学循环与矿物形成还需要大量研究工作验证。  相似文献   

7.
崔志成  付亮  赵琦  周丹丹 《微生物学报》2021,61(8):2219-2235
铁还原菌是一种典型的异化金属还原菌,广泛分布于海洋沉积物、陆地深地层等自然环境,该类细菌可以将铁氧化物中的Fe(Ⅲ)还原为Fe(Ⅱ),在铁、碳的生物地球化学铁循环中发挥重要作用。铁还原菌的末端电子不局限于Fe(Ⅲ),还可以是其他高价金属、有机污染物,可用于土壤、地下水的污染修复和毒性削减。在微生物电化学系统中,铁还原菌氧化有机物产生的电子直接传递给电极,可以产生电能。基于这种独特的胞外电子传递方式,衍生出了微生物燃料电池、微生物电解池、微生物脱盐电池、微生物燃料电池耦合芬顿反应以及光催化微生物燃料电池,常用于微生物发电、生物传感器、生物制氢、定向发酵、海水淡化、生物脱盐和污染物分解矿化。本文从异化铁还原菌的代谢机制、微生态作用、环境修复、水资源再生与能源转化四个方面,综述了铁还原菌的作用原理及国内外研究现状,分析论述了目前亟需解决的关键问题和未来的研究方向,以期为铁还原菌的基础理论研究和应用技术研发提供参考。  相似文献   

8.
【背景】异化铁还原细菌能够在还原Fe(Ⅲ)的同时将毒性较大的Cr(Ⅵ)还原成毒性较小的Cr(Ⅲ),解决铬污染的问题。【目的】基于丁酸梭菌(Clostridiumbutyricum)LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr(Ⅵ)的特性研究。【方法】构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr(Ⅵ)浓度(5、10、15、25和30mg/L),分别测定菌株LQ25对Cr(Ⅵ)还原效率以及生物磁铁矿对Cr(Ⅵ)的还原效率。【结果】菌株LQ25在设置的Cr(Ⅵ)浓度范围内都能良好生长。当Cr(Ⅵ)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr(Ⅵ)的还原率为63.45%±5.13%,生物磁铁矿对Cr(Ⅵ)的还原率为87.73%±9.12%,相比菌株还原Cr(Ⅵ)的效率提高38%。pH变化能影响生物磁铁矿对Cr(Ⅵ)的还原率,当pH2.0时,生物磁铁矿对Cr(Ⅵ)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe(II)的存在形式是Fe(OH)_2。【结论】基于异化铁还原细菌制备生物磁铁矿可用于还原Cr(Ⅵ),这是一种有效去除Cr(Ⅵ)的途径。  相似文献   

9.
[目的]研究嗜水气单胞菌HS01的偶氮染料还原脱色特性.[方法]建立HS01/偶氮染料/电子供体序批式厌氧反应体系,研究Fe(Ⅲ)/腐殖质还原菌HS01以偶氮染料为电子受体的厌氧呼吸特性及影响因素;并构建HS01/偶氮染料/电子供体/铁氧化物体系,探讨铁氧化物对HS01偶氮还原的影响.[结果]HS01可将金橙Ⅰ迅速还原,菌体增殖;柠檬酸、丙三醇、蔗糖和葡萄糖体系中,16h金橙Ⅰ的脱色率分别达87%、85%、88%、90%;不同pH和金橙Ⅰ初始浓度条件下的脱色率不同;在反应体系中加入α-FeOOH,脱色率从90%增加至95%,Fe(Ⅱ)生成量与无染料对照体系相当.[结论]HS01能以葡萄糖为电子供体,金橙Ⅰ为唯一电子受体,进行厌氧呼吸;蔗糖、柠檬酸、丙三醇也可作为有效的电子供体,脱色率依次递减;甲酸、乙酸、乳酸、乙醇及丙酸不能作为HS01厌氧呼吸的电子供体.金橙Ⅰ脱色的最佳pH范围为6.0-8.0;高浓度(2.0 mmol/L)金橙Ⅰ负荷下,HS01仍保持高脱色率(>85%).在HS01/α-FeOOH/金橙Ⅰ体系中,异化铁还原作用与偶氮呼吸作用同时发生,异化铁还原能促进偶氮脱色,而脱色对Fe(Ⅲ)还原没有明显影响.这可为铁/腐殖质还原菌在环境修复和废水处理等领域的应用提供研究积累.  相似文献   

10.
李新  张月超  刘芳华 《微生物学报》2020,60(7):1401-1412
【目的】探究以单环刺螠为代表的海洋环节动物肠道中电活性微生物的存在情况,并表征其生理学及电化学特性。【方法】采用平板划线法、16S rRNA基因测序技术分离纯化菌株并进行菌株鉴定。利用扫描电镜表征菌株形态。高效液相色谱(high performance liquid chromatography,HPLC)检测其无氧呼吸底物氧化及产物生成情况。通过菲啰嗪和甲醛肟显色法检测菌株的异化Fe(Ⅲ)和Mn(Ⅳ)还原能力。借助单室微生物燃料电池(single-chamber microbial fuel cells,SCMFCs)及循环伏安法检测菌株的电化学活性。【结果】从单环刺螠肠道中成功分离得到了一株兼性厌氧菌,16S rRNA基因序列比对结果显示该菌株与Shewanellamarisflavi的相似性达99.93%。扫描电镜结果显示其为杆状,长约2μm,宽度约为0.5μm。HPLC检测结果表明,该菌能以乳酸钠为电子供体,富马酸为电子受体进行无氧呼吸并伴随代谢产物乙酸钠和琥珀酸产生。菲啰嗪和甲醛肟显色法结果证实,该菌具有异化铁、锰还原能力。单室MFCs检测结果发现该菌的最大电流输出密度为146 mA/m2,循环伏安法检测结果显示该菌在0.14 V和–0.51 V位置处分别存在氧化峰和还原峰。【结论】本研究结果证实以单环刺螠为代表的海洋环节动物肠道中存在以Shewanella marisflavi UU-3-2为代表的电活性微生物。表明电化学活性微生物在海洋环节动物肠道中广泛存在。  相似文献   

11.
The discovery that all hyperthermophiles that have been evaluated have the capacity to reduce Fe(III) has raised the question of whether mechanisms for dissimilatory Fe(III) reduction have been conserved throughout microbial evolution. Many studies have suggested that c-type cytochromes are integral components in electron transport to Fe(III) in mesophilic dissimilatory Fe(III)-reducing microorganisms. However, Pyrobaculum islandicum, the hyperthermophile in which Fe(III) reduction has been most intensively studied, did not contain c-type cytochromes. NADPH was a better electron donor for the Fe(III) reductase activity in P. islandicum than NADH. This is the opposite of what has been observed with mesophiles. Thus, if previous models for dissimilatory Fe(III) reduction by mesophilic bacteria are correct, then it is unlikely that a single strategy for electron transport to Fe(III) is present in all dissimilatory Fe(III)-reducing microorganisms.  相似文献   

12.
水稻土中铁还原菌多样性   总被引:3,自引:0,他引:3  
黎慧娟  彭静静 《生态学杂志》2011,22(10):2705-2710
微生物介导的异化Fe(III) 还原是非硫厌氧环境中Fe(III) 还原生成Fe(II) 的主要途径,然而相关的铁还原菌还不是很清楚,特别是在水稻土中.本文采用富集培养的方法,以乙酸和氢气作为电子供体,水铁矿和针铁矿作为电子受体,通过末端限制性片段长度多态性(T-RFLP)技术和16S rRNA基因克隆测序相结合的分子生物学方法研究了水稻土中铁还原菌的多样性.结果表明:无论是以乙酸或氢气为电子供体,水铁矿或针铁矿为电子受体,地杆菌(Geobacter)和梭菌(Clostridiales)是富集到的主要微生物群落;乙酸为电子供体时,富集到的主要微生物群落还包括红环菌(Rhodocyclaceae);因此,除地杆菌外,梭菌和红环菌很可能也是水稻土中重要的铁还原菌.  相似文献   

13.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

14.
水稻土中铁还原菌多样性   总被引:4,自引:0,他引:4  
黎慧娟  彭静静 《应用生态学报》2011,22(10):2705-2710
微生物介导的异化Fe(III) 还原是非硫厌氧环境中Fe(III) 还原生成Fe(II) 的主要途径,然而相关的铁还原菌还不是很清楚,特别是在水稻土中.本文采用富集培养的方法,以乙酸和氢气作为电子供体,水铁矿和针铁矿作为电子受体,通过末端限制性片段长度多态性(T-RFLP)技术和16S rRNA基因克隆测序相结合的分子生物学方法研究了水稻土中铁还原菌的多样性.结果表明:无论是以乙酸或氢气为电子供体,水铁矿或针铁矿为电子受体,地杆菌(Geobacter)和梭菌(Clostridiales)是富集到的主要微生物群落;乙酸为电子供体时,富集到的主要微生物群落还包括红环菌(Rhodocyclaceae);因此,除地杆菌外,梭菌和红环菌很可能也是水稻土中重要的铁还原菌.  相似文献   

15.
异化Fe(Ⅲ)还原微生物研究进展   总被引:7,自引:0,他引:7  
黎慧娟  彭静静 《生态学报》2012,32(5):1633-1642
铁是地壳中含量第四丰富的元素,微生物介导的异化铁还原是自然界中Fe(Ⅲ)还原的主要途径。介绍了Fe(Ⅲ)还原菌的分类及多样性,总结了Fe(Ⅲ)还原菌还原铁氧化物机制及其产能代谢机制,概述了Fe(Ⅲ)还原菌的生态环境意义,并对未来Fe(Ⅲ)还原菌的分子生态学研究方向提出了探索性的建议。  相似文献   

16.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

17.
Li HJ  Peng JJ 《应用生态学报》2011,22(10):2705-2710
Microorganism-mediated dissimilatory Fe (III) reduction is recognized as the dominant mechanism for Fe(III) reduction to Fe(II) in non-sulfidogenic anaerobic environments, but the microorganisms involved, especially in paddy soil, are still poorly understood. In this paper, an enrichment culture was conducted to study the phylogenetic diversity of Fe (III)-reducing bacteria in paddy soil, with acetate or hydrogen as the electron donor and with ferrihydrite or goethite as the electron acceptor, and by the methods of terminal-restriction fragment length polymorphism (T-RFLP) technology and 16S rRNA genes cloning and sequencing. No matter what the electron donor and electron acceptor were supplemented, the most abundant microorganisms were Geobacter and Clostridiales, and Rhodocyclaceae were also abundant, when acetate was supplemented as electron donor, which suggested that besides Geobacter, Clostridiales and Rhodocyclaceae could be also the important Fe(III)-reducing bacteria in paddy soil.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号