首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Saccharomyces cerevisiae ATCC 39859 was immobilized onto small cubes of wood to produce ethanol and very enriched fructose syrup from glucose/fructose mixtures through the selective fermentation of glucose. A maximum ethanol productivity of 21.9 g/l-h was attained from a feed containing 9.7% (w/v) glucose and 9.9% (w/v) fructose. An ethanol concentration, glucose conversion and fructose yield of 29.6 g/l, 62% and 99% were obtained, respectively. This resulted in a final fructose/glucose ratio of 2.7. At lower ethanol productivity levels the fructose/glucose ratio increases, as does the ethanol concentration in the effluent. The addition of 30 mg/l oleic acid to the medium increased the ethanol productivity and its concentration by 13% at a dilution rate of 0.74 h?1.  相似文献   

2.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Kinetic and yield parameters for growth and ethanol production from sucrose (100 g/l) bySaccharomyces cerevisia entrapped in K-carrageenan and calcium alginate were identical to those of free cells. Cell leakage was minimum with calcium alginate gel. For the sixth batch, 4.51 g/lh ethanol productivity (94% conversion of sucrose) was obtained; 60.5 g/l of ethanol was obtained from 200 g/l sucrose with 83.2% conversion, indicating inhibition effects.  相似文献   

4.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

5.
Summary The effect of substrate concentration (S 0) on the fermentation parameters of a sugar mixture byPichia stipitis Y 7124 was investigated under anaerobic and microaerobic conditions. Under microaerobiosisP. stipitis maintained high ethanol yield and productivity when initial substrate concentration did not exceed 150 g/l; ethanol yield of about 0.40 g/g and volumetric productivity up to 0.39 g/l per hour were obtained. Optimal specific ethanol productivity (0.2 g/g per hour) was observed withS 0=110 g/l. Under anaerobic conditionsP. stipitis exhibited the highest fermentative performances atS 0=20 g/l; it produced ethanol with a yield of 0.42 g/g, with a specific rate of 1.1 g/g per day. When the initial substrate level increased, specific ethanol productivity declined gradually and ethanol yield was dependent on the degree of utilization of each sugar in the mixture.Abbreviations E m maximum produced ethanol (g/l) - E 0 initial ethanol (g/l) - E v evaporated ethanol (g/l) - Q p volumetric productivity of ethanol (g ethanol/l per hour or g/l per day) - q p specific productivity of ethanol (g ethanol/g cells per hour) - q pm maximum specific productivity of ethanol (g/l per hour) - S 0 initial substrate concentration (g/l) - t f time at which produced ethanol is maximum (h) - Y p/s ethanol yield (g ethanol produced/g substrate utilized) - Y x/s cell yeild (g cells produced/g substrate utilized) - Y xo/xy xylitol yield (g xylitol produced/g xylose utilized) - probability coefficient - specific growth rate coefficient (h-1 or d-1)  相似文献   

6.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

7.
Corn cob hydrolysates, with xylose as the dominant sugar, were fermented to ethanol by recombinant Escherichia coli KO11. When inoculum was grown on LB medium containing glucose, fermentation of the hydrolysate was completed in 163 h and ethanol yield was 0.50 g ethanol/g sugar. When inoculum was grown on xylose, ethanol yield dropped, but fermentation was faster (113 h). Hydrolysate containing 72.0 g/l xylose and supplemented with 20.0 g/l rice bran was readily fermented, producing 36.0 g/l ethanol within 70 h. Maximum ethanol concentrations were not higher for fermentations using higher cellular concentration inocula. A simulation of an industrial process integrating pentose fermentation by E. coli and hexose fermentation by yeast was carried out. At the first step, E. coli fermented the hydrolysate containing 85.0 g/l xylose, producing 40.0 g/l ethanol in 94 h. Baker's yeast and sucrose (150.0 g/l) were then added to the spent fermentation broth. After 8 h of yeast fermentation, the ethanol concentration reached 104.0 g/l. This two-stage fermentation can render the bioconversion of lignocellulose to ethanol more attractive due to increased final alcohol concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 124–128 doi:10.1038/sj.jim.7000287 Received 20 February 2002/ Accepted in revised form 04 June 2002  相似文献   

8.
The purpose of this research was to study the possibility of the production of ethanol and enriched fructose syrups from sugar cane molasses using the yeast Saccharomyces cerevisiae ATCC 36858. In batch experiments with a total sugar concentration of between 96.7 g/l and 323.5 g/l, the fructose yield was above 90% of the theoretical value. The ethanol yield and volumetric productivity were in the range of 66% and 77% of the theoretical value, and between 0.53 g ethanol/l × h and 3.15 g ethanol/l × h, respectively. The fructose fraction in the carbohydrates content of the produced syrups was more than 95% when the total initial sugar concentration in the medium was below 273.8 g/l. Some oligosaccharides and glycerol were also produced in all tested media. The maximum amount of produced oligosaccharides including raffinose accounted for 13.4 g/l in the cane molasses medium with 323.5 g/l sugars in the initial phase of the fermentation process. The oligosaccharides produced and raffinose were completely consumed by the end of the fermentation process when the total initial sugar concentration was less than 191.3 g/l. The glycerol concentration was below 9.9 g/l. These findings are useful in the production of ethanol and high fructose syrups using sugar cane molasses.  相似文献   

9.
Summary A new single-batch fermentation process for the commercial production of ethanol from refined sucrose, raw sugar, sugar cane juice and sugar cane syrup has been developed using a highly adapted and efficient strain of Zymomonas mobilis. The process gives a 94–98% sucrose hydrolysis efficiency and a 95–98% ethanol conversion efficiency. Within 24–30 h, 200 g/l sucrose is converted to produce 95.5 g/l ethanol. Reinoculation is carried out from the fermented broth without the need for centrifugation or membrane filtration.  相似文献   

10.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

11.
Summary Zymomonas mobilis cells were immobilized into small 1 mm diameter beads of Ca-alginate in order to minimize mass transfer limitations and maximize immobilized cell activity. A combination of small bead size with a high cell concentration of 58 g dry wt. cell per lit. bead volume resulted in high ethanol productivities using a newly designed packed bed bioreactor system. Steady-state dilution rates ranging from 0.4 h-1 to 3.9 h-1 were run resulting in a maximum productivity of 102 g ethanol/l/h for an inlet substrate concentration of 100 g glu/l and 87% conversion. The bioreactor was run continuously at a fixed dilution rate for 384 h and short intermittent treatment of the beads with CaCl2 temporarily increased ethanol productivity to a maximum of 116 g ethanol/l/h.  相似文献   

12.
The conversion of starch from unhydrolyzed cassava flour to ethanol by a pure culture of Endomycopsis fibuligera and by a co-culture of this amylolytic yeast and the bacterium Zymomonas mobilis was studied. The best overall results were obtained using the mixed culture. After 96 h of fermentation of a medium containing 150 g/l initial cassava starch, an ethanol concentration of 31.4 g/l, a productivity of 0.33 g ethanol/l × h and a yield of 0.21 g ethanol/g initial starch were reached. The highest yield (0.37 g/g) was obtained after 48 h when using a medium containing 50 g/l initial starch.  相似文献   

13.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a fructose negative mutant of Zymomonas mobilis is analysed using a recently described methodology (Ait-Abdelkader and Baratti, Biotechnol. Tech. 1993,329–334) based on polynomial fitting and calculation of instantaneous and overall parameters. These parameters are utilized to describe this mixed-substrate mixed-product fermentation.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qg specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - YSor/F sorbitol yield on fructose, (g/g) - YP/G ethanol yield on glucose, (g/g)  相似文献   

14.
Sun ZY  Tang YQ  Iwanaga T  Sho T  Kida K 《Bioresource technology》2011,102(23):10929-10935
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.  相似文献   

15.
Summary The fermentation of an equimolar mixture of glucose and fructose into ethanol and sorbitol by a glucose negative mutant ofZymomonas mobilis was monitored. The results were analyzed using a recently described method based on polynomial fitting and calculation of intantaneous and overall parameters. These parameters described well the physiology of this mixed-substrate mixed-product fermentation. Growth of the mutant was greatly inhibited on this medium. Fructose was quantitatively converted into sorbitol while glucose was oxidized into gluconic acid .This latter product was utilized as substrate for cell growth and ethanol production.Nomenclature X biomass concentration, g/l - S total sugar concentration, g/l - Glu glucose concentration, g/l - Fru fructose concentration, g/l - Sor sorbitol concentration, g/l - P ethanol concentration, g/l - t fermentation time, h - specific growth rate, h-1 - qs specific sugar uptake rate, g/g.h - qG specific glucose uptake rate, g/g.h - qF specific fructose uptake rate, g/g.h - qP specific ethanol productivity, g/g.h - qSor specific sorbitol productivity, g/g.h - YX/S biomass yield on total sugar, g/g - YP/S ethanol yield on total sugar, g/g - YSor/S sorbitol yield on total sugar, g/g - ySor/f sorbitol yield on fructose, g/g - YP/G ethanol yield on glucose, g/g  相似文献   

16.
Summary Enhanced rates of continuous ethanol production by a flocculent strain ofPichia stipitis from a sugar mixture (xylose 75%, glucose 20%, arabinose 5%) were attained using a single-stage gas lift tower fermentor. With a substrate feed of 50g/l, the biomass accumulated at a level near 50g/l, showed a maximum and stable ethanol productivity of 10.7 g/l.h, with a substrate conversion of 80%; the ethanol yield reached 0.41g/g. In these operating conditions, similar performances were obtained when D.xylose alone was supplied.  相似文献   

17.
Summary Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.  相似文献   

18.
 Pure and mixed cultures of Zymomonas mobilis and Saccharomyces sp. were tested for the production of ethanol using sucrose as the carbon source. Both strains, isolated from spontaneously fermenting sugar-cane juice, are flocculent and alcohol-tolerant. The best results were obtained using a mixed culture, with a yield of 0.5 g ethanol/g sugar consumed and a volumetric productivity of 1.5 g ethanol l-1 h-1. No levan was produced even if a sucrose-based medium was used. Received: 20 April 1995/Received revision: 26 July 1995/Accepted: 13 September 1995  相似文献   

19.
Kluyveromyces marxianus DMKU 3-1042, isolated by an enrichment technique in a sugar cane juice medium supplemented with 4% (w/v) ethanol at 35 degrees C, produced high concentrations of ethanol at both 40 and 45 degrees C. Ethanol production by this strain in shaking flask cultivation in sugar cane juice media at 37 degrees C was highest in a medium containing 22% total sugars, 0.05% (NH(4))(2)SO(4), 0.05% KH(2)PO(4), and 0.15% MgSO(4).7H(2)O and having a pH of 5.0; the ethanol concentration reached 8.7% (w/v), productivity 1.45 g/l/h and yield 77.5% of theoretical yield. At 40 degrees C, a maximal ethanol concentration of 6.78% (w/v), a productivity of 1.13 and a yield 60.4% of theoretical yield were obtained from the same medium, except that the pH was adjusted to 5.5. In a study on ethanol production in a 5l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.2 vvm throughout the fermentation, K. marxianus DMKU 3-1042 yielded a final ethanol concentration of 6.43% (w/v), a productivity of 1.3g/l/h and a yield of 57.1% of theoretical yield.  相似文献   

20.
Summary As components of combined fermentation of both glucose and xylose to ethanol by separated or coculture processes, the effects of initial sugar concentrations on the fermentative performances ofPichia stipitis Y7124,Candida shehatae ATCC 22984,Saccharomyces cerevisiae CBS1200 andZymomonas mobilis ATCC10988 were investigated. From the characteristics of sugar and produced ethanol tolerances the most suitable microorganisms for the achievement of glucose and xylose fermentations have been selected with respect to different fermentation schemes.Nomenclature Tf fermentation time (hours) - Ef ethanol concentration (g/l) - YP/S ethanol yield (g of ethanol produced/g of sugar used) - qp average specific productivity of ethanol (g ethanol/g of cells per hour) - max maximum specific growth rate (h–1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号