首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary   The restoration of physical habitat has emerged as a key activity for managers charged with reversing the damage done by humans to streams and rivers, and there has been a great expenditure of time, money and other resources on habitat restoration projects. Most restoration projects appear to assume that the creation of habitat is the key to restoring the biota ('the field of dreams hypothesis'). However, in many streams where new habitat is clearly required if populations and communities are to be restored, there may be numerous other factors that cause the expected link between habitat and biotic restoration to break down. We discuss five issues that are likely to have a direct bearing on the success, or perceived success of local habitat restoration projects in streams: (i) barriers to colonization, (ii) temporal shifts in habitat use, (iii) introduced species, (iv) long-term and large-scale processes, and (v) inappropriate scales of restoration. The purpose of the study was primarily to alert ecologists and managers involved in stream habitat restoration to the potential impacts of these issues on restoration success. Furthermore, the study highlights the opportunities provided by habitat restoration for learning how the factors we discuss affect populations, communities and ecosystems.  相似文献   

2.
The importance of physical habitat assessment for evaluating river health   总被引:25,自引:0,他引:25  
1. Physical habitat is the living space of instream biota; it is a spatially and temporally dynamic entity determined by the interaction of the structural features of the channel and the hydrological regime. 2. This paper reviews the need for physical habitat assessment and the range of physical habitat assessment methods that have been developed in recent years. These methods are needed for assessing improvements made by fishery enhancement and river restoration procedures, and as an intrinsic element of setting environmental flows using instream flow methods. Consequently, the assessment methods must be able to evaluate physical habitat over a range of scales varying from the broad river segment scale (up to hundreds of kilometres) down to the microhabitat level (a few centimetres). 3. Rapid assessment methods involve reconnaissance level surveys (such as the habitat mapping approach) identifying, mapping and measuring key habitat features over long stretches of river in a relatively short space of time. More complex appraisals, such as the Physical Habitat Simulation System (PHABSIM), require more detailed information on microhabitat variations with flow. 4. Key research issues relating to physical habitat evaluation lie in deciding which levels of detail are appropriate for worthwhile yet cost-effective assessment, and in determining those features that are biologically important and hence can be considered habitat features rather than simple geomorphic features. 5. The development of new technologies particularly relating to survey methods should help improve the speed and level of detail attainable by physical habitat assessments. These methods will provide the necessary information required for the development of the two-and three-dimensional physical and hydraulic habitat models. 6. A better understanding of the ways in which the spatial and temporal dynamics of physical habitat determine stream health, and how these elements can be incorporated into assessment methods, remains a key research goal.  相似文献   

3.
Water voles have suffered large population declines in the United Kingdom due to habitat degradation and predation by invasive American mink. Habitat restoration of floodplain wetlands could help to reverse this decline, but the detailed habitat preferences of water voles in these environments have not been well studied, and the impacts of restoration practices on water vole populations are not known. This study investigated the habitat preferences of water voles in a reconnected lowland river floodplain. The results show that water voles preferred wider water bodies, and taller and more diverse vegetation. The impact of flooding on water voles was also investigated by comparing their occurrence between two survey periods which were separated by large flood events, and by comparing distribution patterns before and after restoration. Contrary to previous reports, there was no observed negative impact of flood events on water vole distribution, which has slightly expanded since the floodplain was reconnected to the river in 2009. Overall this study demonstrates that restored wetlands can provide suitable habitat for water voles, and provides guidance on some of the factors which should be considered when designing floodplains for water vole conservation.  相似文献   

4.
Monitoring ecological restoration has been historically dependent on traditional inventory methods based on detailed information obtained from field plots. New paradigms are now needed to successfully achieve restoration as a large‐scale, long‐lasting transformative process. Fortunately, advances in technology now allow for unprecedented shifts in the way restoration has been planned, implemented, and monitored. Here, we describe our vision on how the use of new technologies by a new generation of restoration ecologists may revolutionize restoration monitoring in the coming years. The success of the many ambitious restoration programs planned for the coming decade will rely on effective monitoring, which is an essential component of adaptive management and accountability. The development of new remote sensing approaches and their application to a restoration context open new avenues for expanding our capacity to assess restoration performance over unprecedented spatial and temporal scales. A new generation of scientists, which have a background in remote sensing but are getting more and more involved with restoration, will certainly play a key role for making large‐scale restoration monitoring a viable human endeavor in the coming decade—the United Nations' decade on ecosystem restoration.  相似文献   

5.
6.
Developing quantitative ecosystem–scale expectations of habitat restoration projects and examining trade‐offs associated with alternative approaches has been a challenge for restoration ecology. Many of the largest freshwater lake restoration projects have occurred in Florida to remediate degradation to vegetated littoral habitats resulting from stabilized water levels, but effects across lake food‐webs have not been assessed. We developed an ecosystem model using Ecopath with Ecosim and Ecospace for a generalized large, eutrophic Florida Lake to explore how simulated restoration activities could influence fish communities with emphasis on sport fish abundance. We modeled three habitat restoration scenarios: (1) “no control,” (2) a “10‐year control” that restored littoral habitat every 10 years, and (3) a “combined control” scenario that restored littoral habitat every 10 years with maintenance controls between 10‐year periods. Our “combined control” scenario provided the largest long‐term habitat restoration benefits for sport fish abundance and the fisheries they support. In Ecospace, we simulated a littoral habitat restoration project that reduced lake‐wide tussock coverage from 30 to 15%. Ecospace predicted positive benefits to sport fish and fisheries following the restoration simulation and highlighted the importance of habitat edge effects, spatial design of habitat restoration projects, and sampling designs for evaluating restoration projects.  相似文献   

7.
Regional patterns of species richness are often explained by models using temperature or measures habitat suitability. Generally, species richness is positively associated with temperature, and negatively associated with habitat degradation. While these models have been well tested across spatial scales, they have rarely been tested on a temporal scale – in part due to the difficulty in ascertaining accurate historical data at an appropriate resolution. In this study, we compared the results of temporal and spatial models, each incorporating two predictors of species richness: temperature, and human population density (as a surrogate of human-related habitat impacts). We found that the change in species richness from the early to late part of the 20th century was positively correlated with temperature change, and negatively correlated with human population density change. When we compared these results to two spatial models using contemporary and historic data, the spatial effects of temperature on butterfly richness were similar to its temporal effects, while the effect of human population density through time is the opposite of its spatial effect. More generally, the assumption that spatial patterns are equivalent to temporal ones when applying macroecological data to global change is clearly unreliable.  相似文献   

8.
The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be related to each other and how their relative proportions vary through time in a local community remains unclear. Re-analysis of early post-fire successional data for a California chaparral community shows that, in the same communities and at small spatial scales, the native-exotic correlations varied through time. Both exotic richness and exotic fraction (i.e., the proportion of exotic species in the flora) quickly increased and then gradually declined, during the initial stages of succession following fire disturbance. This result sheds new light on habitat invasibility and has implications for timing the implementation of effective management actions to prevent and/or mitigate species invasions.  相似文献   

9.
Traditionally, ecological restoration is based on re‐establishing patterns of vegetation communities with the expectation that wildlife will recolonize, restoring the ecological function. However, in many restoration projects, wildlife fails to recolonize, even when vegetation is restored, in many cases because revegetated habitats lack the critical features required by wildlife. We present a new approach to restoration, based on a detailed understanding of ecological process, the mechanisms by which wildlife respond to landscape patterns. Our animal‐centric approach involves measuring the risk‐sensitive decision‐making of individual animals as they balance searching for food, mates, and breeding sites with avoiding being eaten by predators and relates this to fine‐scale habitat and landscape structure. The outcome of these decisions can be measured in occupancy of habitat, the information on which conventional restoration is based. Incorporating landscape genetics allows retrospective assessment of the outcome of dispersal decisions by individual animals on a deeper time frame and at regional scales. Fine‐scale connectivity models can be parameterized with these multiscale spatial and temporal data to direct restoration efforts. We are translating this novel approach to practice in the large Midlands restoration project (4 years, AUD $6 million) in Tasmania, Australia, in partnership with Greening Australia. More than 200 years of intensive agricultural practice in this National Biodiversity Hotspot has resulted in extensive landscape modification, high densities of feral cats, and decline of many native mammals. Our research–practice partnership will alter the way that restoration is done, leading hopefully to successful restoration of wildlife, gene flow, and ecological function.  相似文献   

10.
Protected areas are recognized as an essential tool to safeguard habitat integrity and biodiversity in the Anthropocene. Substantial efforts have been made to clarify the conditions under which they deliver conservation outcomes effectively. Location, spatial design, management strategy and threats, have commonly been identified as key factors. The impacts of these factors have, however, often been evaluated independently, and there is limited information on how their combined and interactive effects can improve or hinder protected area effectiveness. Here we develop a framework for understanding the combined effects of these factors. This has important implications for how protected areas are established and maintained.  相似文献   

11.
湖南省城市群生态网络构建与优化   总被引:9,自引:1,他引:8  
大型生境斑块为区域生物多样性保护提供了重要的空间保障。然而,快速城市化使得大型生境斑块变得日益破碎化、岛屿化,连接性不断下降,且日益受到周边土地利用变化的强烈影响,已严重威胁着区域生物多样性的保护。通过生态廊道建立或修复破碎生境斑块之间的连接,将非常有利于生态网络生态服务功能的有效发挥。基于景观生态学和保护生物学的相关原理,以湖南省城市群为例,在RS和GIS技术的支撑下,采用最小费用路径和情景分析方法,定量模拟了研究区的潜在生态廊道,基于重力模型对重要生态廊道进行了识别与提取,并就消费面模型对潜在生态网络结果产生的影响进行了分析,在此基础上有针对性地提出了生态网络优化的对策。研究结果表明,林地和耕地是组成研究区生态网络的优势景观要素类型;不同生境斑块间的相互作用强度差异显著,总体上西高东低,南高北低;消费面模型能够在较大程度上影响到生态网络的分析结果,因而进行情景分析十分重要和必要。研究结果可为研究区生态网络的构建和优化提供科学依据,同时可为其他城市群区域生态网络的构建提供参考和借鉴。  相似文献   

12.
Spatial expansion and increased population abundance of masu salmon Oncorhynchus masou have been recently reported following habitat restoration in some rivers, but no studies have examined these types of changes under natural conditions. We found spatial expansion and increased population density of masu salmon parr in rivers of eastern Hokkaido where no habitat restoration had occurred during the period examined. Changes in the distribution and population densities of parr are often regarded as effects of river habitat destruction and restoration, yet such changes should be evaluated while taking into account the effects of other ocean environmental conditions as well.  相似文献   

13.
Dispersal is a fundamental attribute of species in nature and shapes population dynamics, evolutionary trajectories and genetic variation across spatial and temporal scales. It is increasingly clear that landscape features have large impacts on dispersal patterns. Thus, understanding how individuals and species move through landscapes is essential for predicting impacts of landscape alterations. Information on dispersal patterns, however, is lacking for many taxa, particularly reptiles. Eastern foxsnakes (Mintoinus gloydi) are marsh and prairie specialists that avoid agricultural fields, but they have persisted across a fragmented region in southwestern Ontario and northern Ohio. Here, we combined habitat suitability modelling with population genetic analyses to infer how foxsnakes disperse through a habitat mosaic of natural and altered landscape features. Boundary regions between the eight genetic clusters, identified through assignment tests, were comprised of low suitability habitat (e.g. agricultural fields). Island populations were grouped into a single genetic cluster, and comparatively low F(ST) values between island and mainland populations suggest open water presents less of a barrier than nonsuitable terrestrial habitat. Isolation by resistance and least-cost path analysis produced similar results with matrices of pairwise individual genetic distance significantly more correlated to matrices of resistance values derived from habitat suitability than models with an undifferentiated landscape. Spatial autocorrelation results matched better with assignment results when incorporating resistance values rather than straight-line distances. All analyses used in our study produced similar results suggesting that habitat degradation limits dispersal for foxsnakes, which has had a strong effect on the genetic population structure across this region.  相似文献   

14.
海草场生态系统及其修复研究进展   总被引:1,自引:0,他引:1  
海草场能够提供重要的生态系统服务。自20世纪末以来,由于人类活动和自然灾害的影响,全球范围内的海草场出现了急剧衰退,由此也促进了海草场生态系统的研究以及海草场人工修复技术的发展。近年来,针对海草场生境流失的现状,中国也开始开展海草场修复工作。从以下方面进行论述:(1)海草的种类、分布,海草场生态系统功能及其生态系统服务:与陆地系统相比,全球海草物种多样性较低,了解海草的分布特征有助于通过了解海草如何适应当地环境压力,以揭示海草适应环境的能力;海草场提供重要而广泛的自然生态系统服务,特别是在维护近岸生态系统健康和满足人类需求过程中起到重要的作用;(2)海草场的衰退及其原因:认识并缓解人类压力对海草场的危害是促进海草场生态系统可持续发展的重要一环;(3)国内外海草场修复现状:以此阐明海草场修复原理,为海草场修复提供科学的方法;(4)总结与讨论:基于科学研究背景,为中国海草场生态系统保护和修复提出建议。海草场的修复和保护应当相辅相成,并与我国海岸长远规划相结合,以此推动我国海草场生态系统服务的可持续发展。  相似文献   

15.
The loss of biodiversity following fragmentation and degradation of habitat is a major issue in conservation biology. As competition for resources increases following habitat loss and fragmentation, severe population declines may occur even in common, highly mobile species; such demographic decline may cause changes within the population structure of the species. The regent honeyeater, Anthochaera phrygia, is a highly nomadic woodland bird once common in its native southeast Australia. It has experienced a sharp decline in abundance since the late 1970s, following clearing of large areas of its preferred habitat, box-ironbark woodland, within the last 200 years. A captive breeding program has been established as part of efforts to restore this species. This study used genetic data to examine the range-wide population structure of regent honeyeaters, including spatial structure, its change through time, sex differences in philopatry and mobility, and genetic differences between the captive and wild populations. There was low genetic differentiation between birds captured in different geographic areas. Despite the recent demographic decline, low spatial structure appears to have some temporal consistency. Both sexes appear to be highly mobile, and there does not seem to be significant genetic differentiation between the captive and wild populations. We conclude that management efforts for survival of this species, including habitat protection, restoration, and release of captive-bred birds into the wild, can treat the species as effectively a single genetic population.  相似文献   

16.
There is compelling evidence that Afro‐Palaearctic (A‐P) migrant bird populations have declined in Europe in recent decades, often to a greater degree than resident or short‐distance migrants. There appear to have been two phases of decline. The first in the 1960s–1970s, and in some cases into the early 1980s, largely affected species wintering predominantly in the arid Sahelian zone, and the second since the 1980s has mostly affected species wintering in the humid tropics and Guinea forest zone. Potential drivers of these declines are diverse and are spread across and interact within the migratory cycle. Our knowledge of declining species is generally better for the breeding than the non‐breeding parts of their life cycles, but there are significant gaps in both for many species. On the breeding grounds, degradation of breeding habitats is the factor affecting the demography of the largest number of species, particularly within agricultural systems and woodland and forests. In the non‐breeding areas, the interacting factors of anthropogenic habitat degradation and climatic conditions, particularly drought in the Sahel zone, appear to be the most important factors. Based on our synthesis of existing information, we suggest four priorities for further research: (1) use of new and emerging tracking technologies to identify migratory pathways and strategies, understand migratory connectivity and enable field research to be targeted more effectively; (2) undertake detailed field studies in sub‐Saharan Africa and at staging sites, where we understand little about distribution patterns, habitat use and foraging ecology; (3) make better use of the wealth of data from the European breeding grounds to explore spatial and temporal patterns in demographic parameters and relate these to migratory pathways and large‐scale patterns of habitat change and climatic factors; and (4) make better use of remote sensing to improve our understanding of how and where land cover is changing across these extensive areas and how this impacts A‐P migrants. This research needs to inform and underpin a flyway approach to conservation, evaluating a suite of drivers across the migratory cycle and combining this with an understanding of land management practices that integrate the needs of birds and people in these areas.  相似文献   

17.
1. A key element of conservation planning is the extremely challenging task of estimating the likely effect of restoration actions on population status. To compare the relative benefits of typical habitat restoration actions on Pacific salmon (Oncorhynchus spp.), we modelled the response of an endangered Columbia River Chinook salmon (O. tshawytscha) population to changes in habitat characteristics either targeted for restoration or with the potential to be degraded. 2. We applied a spatially explicit, multiple life stage, Beverton‐Holt model to evaluate how a set of habitat variables with an empirical influence on spring‐run Chinook salmon survivorship influenced fish population abundance, productivity, spatial structure and diversity. Using habitat condition scenarios – historical conditions and future conditions with restoration, no restoration, and degradation – we asked the following questions: (i) how is population status affected by alternative scenarios of habitat change, (ii) which individual habitat characteristics have the potential to substantially influence population status and (iii) which life stages have the largest impact on population status? 3. The difference in population abundance and productivities resulting from changes in modelled habitat variables from the ‘historical’ to ‘current’ scenarios suggests that there is substantial potential for improving population status. Planned restoration actions directed toward modelled variables, however, produced only modest improvements. 4. The model predicted that population status could be improved by additional restoration efforts directed toward further reductions in the percentage of fine sediments in the streambed, a factor that has a large influence on egg survival. Actions reducing fines were predicted to be especially effective outside the national forest that covers most of the basin. Scenarios that increased capacity by opening access to habitat in good condition also had a positive but smaller effect on spawner numbers. 5. Degradation in habitat quality, particularly in percent fine sediments, within stream reaches located in the national forest had great potential to further reduce this population’s viability. This finding supports current forest planning efforts to minimise road density and clear‐cut harvests and to return forest stand structure in dry regions to the historical condition that promoted frequent low‐intensity fires rather than catastrophic stand‐replacing fires, as these landscape factors have been shown to influence percent fine sediment in streams. 6. Together, these results suggest that planning focusing on protecting currently good habitat, reducing fine sediments to promote egg survival and increasing spawner capacity will be beneficial to endangered spring‐run Chinook population status.  相似文献   

18.
Summary Studies of forest fragmentation, particularly in the species-rich tropical zone, have contributed significantly to our understanding of its effects and impacts, and allow us to predict a cascade of flow-on effects likely to emerge in the coming decades. Practical management strategies to combat these effects, however, have not been forthcoming, despite intuitive assumptions and a growing body of scientific evidence that maintaining and restoring habitat connectivity is likely to be critical for the long-term persistence of many life forms in these fragmented landscapes. This paper reviews the potential problems involved with linkages, and examines some of the strategies adopted to overcome these issues in a linkage restoration project on the Atherton Tableland, in the Wet Tropics of north-eastern Australia. The paper concludes with the suggestion that restoration projects, such as the Donaghy's Corridor example, offer opportunities for researchers and practitioners to collaboratively observe and validate these strategies, and develop 'real world' techniques to reverse the ecological, social and economic effects of forest fragmentation.  相似文献   

19.
The diversity of functional forms and strategies in plant communities is essential to the maintenance of the services that ecosystems provide humanity, and ultimately to the homeostasis of the biosphere. This diversity emerges from evolutionary forces operating at lower levels; these exploit the opportunities for specialization presented by exogenous and endogenous spatial and temporal heterogeneity. Two major theoretical approaches have been taken to understand how strategies arise and are maintained: optimization models, which consider the fitnesses of types in isolation, and game-theoretic methods, which take frequency dependence into account. The game-theoretic approach is more powerful, but also more challenging to apply. For some relatively simple problems in the study of biodiversity, we show how the game-theoretic formulation can be translated into an equivalent problem in optimization. More generally, however, new techniques will be needed to explore the dynamics of multiple coexisting types and strategies.  相似文献   

20.
Animal movement has been the focus on much theoretical and empirical work in ecology over the last 25 years. By studying the causes and consequences of individual movement, ecologists have gained greater insight into the behavior of individuals and the spatial dynamics of populations at increasingly higher levels of organization. In particular, ecologists have focused on the interaction between individuals and their environment in an effort to understand future impacts from habitat loss and climate change. Tools to examine this interaction have included: fractal analysis, first passage time, Lévy flights, multi‐behavioral analysis, hidden markov models, and state‐space models. Concurrent with the development of movement models has been an increase in the sophistication and availability of hierarchical bayesian models. In this review we bring these two threads together by using hierarchical structures as a framework for reviewing individual models. We synthesize emerging themes in movement ecology, and propose a new hierarchical model for animal movement that builds on these emerging themes. This model moves away from traditional random walks, and instead focuses inference on how moving animals with complex behavior interact with their landscape and make choices about its suitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号