首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了掌握持续干旱胁迫下外源精胺(Spm)对红椿幼苗的形态和生理调节效应,本研究以2年生红椿盆栽幼苗为试验对象,在人工遮雨棚中开展干旱胁迫及外源精胺调节试验,试验设置4个持续干旱胁迫处理:(1)对照(土壤相对含水量45%~50%,每天浇水至饱和状态,CK);(2)轻度干旱胁迫(土壤相对含水量30%~38%,持续干旱7 d);(3)中度干旱胁迫(土壤相对含水量25%~30%,持续干旱14 d);(4)重度干旱胁迫(土壤相对含水量20%~25%,持续干旱21 d)。然后,连续3天对轻度、中度和重度干旱胁迫处理喷施外源Spm(浓度为1 mmol·L-1)进行修复调节,并正常管护5天。结果表明:喷施Spm对重度干旱胁迫下植株形态损伤的修复速度远低于轻度和中度干旱胁迫植株;在对照、轻度干旱胁迫(或中度、重度)以及喷施外源Spm调节三者之间,红椿幼苗叶片相对含水量和叶绿素含量均差异极显著(P0.01);在对照、中度干旱胁迫(或重度)以及喷施外源Spm调节三者之间,红椿幼苗叶片相对电导率均差异极显著(P0.01);在对照、轻度干旱胁迫以及喷施外源Spm调节三者之间,红椿幼苗叶片MDA含量和POD含量差异显著(P0.05);在对照、重度干旱胁迫以及喷施外源Spm调节三者之间,红椿幼苗叶片MDA含量和POD含量差异极显著(P0.01);在对照、重度干旱胁迫以及喷施外源Spm调节三者之间,红椿幼苗叶片游离脯氨酸含量差异极显著(P0.01);喷施1 mmol·L-1Spm可修复红椿在遭受干旱胁迫时造成的形态和生理损伤并提高植株的持续抗旱能力,其修复作用对轻度和中度干旱胁迫更为显著。  相似文献   

2.
水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响   总被引:41,自引:4,他引:37  
李霞  阎秀峰  于涛 《应用生态学报》2005,16(12):2353-2356
以轻度干旱、重度干旱和水涝处理黄檗幼苗,测定丙二醛(MDA)和游离脯氨酸含量及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性的动态变化.结果表明,处理40 d以后,轻度干旱、重度干旱和水涝处理的叶片MDA含量始终显著高于对照,最高分别达对照的2.9、2.37和4.12倍,三者之间在处理80 d以后MDA含量差异不显著.水涝处理和对照的游离脯氨酸含量在处理期间没有明显变化,干旱处理的游离脯氨酸含量从处理后40 d开始增加、80 d后回落,重度干旱处理的增加幅度显著大于轻度干旱处理.SOD、POD和CAT活性的变化趋势缺乏一致性,但重度干旱处理的黄檗幼苗,叶片的SOD、POD和CAT活性在处理期间始终显著高于轻度干旱、水涝处理和对照.  相似文献   

3.
为了解蚬木(Excentrodendron hsienmu)幼苗对喀斯特干旱生境的生理适应,基于构建的模拟喀斯特生境装置,以2年生蚬木幼苗为供试材料,研究岩溶水分和土壤水分两个因素对蚬木幼苗叶片光合及抗性生理的影响。结果表明:蚬木的光合作用-光响应曲线符合非直角双曲线函数模型,岩溶水层2种处理下的光响应曲线变化基本一致。土壤水分显著影响叶片最大净光合速率和暗呼吸速率,2个因素及其交互作用极显著影响叶片相对叶绿素含量。最大净光合速率和暗呼吸速率随土壤干旱胁迫加剧而下降,相对叶绿素含量则表现为增加趋势。土壤水分极显著影响游离脯氨酸、显著影响丙二醛和过氧化物酶,干旱胁迫组的游离脯氨酸含量显著高于对照,重度干旱胁迫下丙二醛含量显著高于对照。过氧化物酶活性均随干旱加剧先升后降,峰值出现在中度胁迫。研究表明,蚬木具有较强的耐旱潜力,渗透调节物质的主动适应是其耐旱的主要原因。  相似文献   

4.
以水稻野生型‘日本晴’(NIP)及其BCAT4基因突变体BCAT4 1为材料,在苗期进行PEG 6000模拟干旱处理,分析其对幼苗形态、生长和抗逆生理指标的影响,以探究BCAT4基因在水稻响应干旱胁迫中的作用。结果表明:(1)20% PEG处理后野生型NIP幼苗叶片中BCAT4表达量显著高于对照(处理0 d),复水后幼苗存活率显著高于突变体BCAT4 1。(2)20% PEG处理后,两水稻材料幼苗叶片的相对叶绿素含量下降,脯氨酸和可溶性糖含量上升,抗氧化酶活性先上升后下降,且突变体BCAT4 1中上述各指标均显著低于同期NIP。(3)两材料幼苗叶片中丙二醛和过氧化氢含量及相对电导率随胁迫处理天数增加而上升,且BCAT4 1均显著高于同期NIP。(4)在20% PEG处理后,两水稻材料间根系各形态、生长和生理指标的差异均小于相应叶片。研究发现,BCAT4基因突变加剧了干旱胁迫下水稻幼苗叶片叶绿素含量的下降,抑制了地上部渗透调节物质的积累及抗氧化酶活性上升的幅度,促进了丙二醛和过氧化氢积累以及相对电导率增加,从而降低了水稻的耐旱性。  相似文献   

5.
种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响   总被引:2,自引:0,他引:2  
在温室内遮阴条件下,设置80%、60%、40%和20%田间持水量(对照、轻度、中度和重度干旱)4个处理,研究种子大小和干旱胁迫对盆栽辽东栎幼苗生长和生理特性的影响。结果表明: 大种子(3.05±0.38 g)幼苗的单株叶面积、总干质量和根冠比在所有处理均显著大于小种子(1.46±0.27 g)幼苗,前者的株高、基径、叶片数、比叶面积、相对生长率和净同化率等生长参数在轻度、中度和重度干旱处理均不同程度大于后者。大种子幼苗叶片过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性均高于小种子幼苗,前者叶片丙二醛(MDA)、可溶性蛋白、游离脯氨酸含量和叶绿素总量在部分干旱处理显著大于后者。除根冠比外,其他生长参数均随干旱胁迫增强逐渐减小,重度干旱处理大、小种子幼苗总干质量分别比对照降低19.4%和20.0%。POD、CAT和SOD活性均随干旱胁迫增强先升后降,在中度干旱处理,大、小种子幼苗POD活性分别显著高于对照126.7%和142.1%,CAT活性分别显著高于对照170.0%和151.9%。在重度干旱处理,大、小种子幼苗MDA含量分别显著高于对照86.5%和68.9%。可溶性蛋白、游离脯氨酸含量和叶绿素总量均随干旱胁迫增强先升后降,在中度干旱处理,大、小种子幼苗可溶性蛋白含量分别显著高于对照320.7%和352.7%。辽东栎大种子幼苗可依赖其生长和生理方面的优势比小种子幼苗具有更强的干旱耐受性,在退化次生林人工辅助实生更新中应优先选用抗逆性更强的大种子幼苗。  相似文献   

6.
以冬小麦品种‘豫农211’为材料,通过设置持续12 d控水和干旱后复水2 d盆栽实验,研究根施15 mmol·L~(-1)丙酸溶液处理下小麦植株形态、叶片相对含水量、电导率、丙二醛含量对干旱胁迫的响应,以及控水和复水过程中叶片脯氨酸含量及其关键代谢酶活性的动态变化,以探明外源丙酸提高小麦抗旱性的脯氨酸代谢机制。结果表明:(1)在干旱胁迫条件下(土壤相对含水量降至20%),根施丙酸处理可显著提高小麦叶片相对含水量,并显著降低叶片相对电导率和丙二醛含量(P0.05);丙酸处理组小麦幼苗萎蔫程度明显低于同期对照,地上部生物量积累量比对照增加了13.3%。(2)根施丙酸处理的小麦叶片脯氨酸积累量在轻度干旱胁迫下(土壤相对含水量降至45%~55%)显著高于对照,且随着干旱胁迫程度的加剧(土壤相对含水量降至20%以下)脯氨酸含量仍能稳定维持在正常水平(300μg·g~(-1)左右),而对照叶片脯氨酸含量则呈急剧上升的趋势;复水处理后,丙酸处理的小麦植株中叶片脯氨酸含量能迅速恢复至正常水平。(3)在整个控水至复水过程中,小麦叶片脯氨酸合成关键酶△1-吡咯啉-5-羧酸合成酶(P5CS)和鸟氨酸σ-氨基转移酶(σ-OAT)活性均呈现先升后降的变化趋势,吡咯啉-5-羧酸还原酶(P5CR)活性呈现先降后升的变化趋势,而脯氨酸降解关键酶脯氨酸脱氢酶(PDH)活性呈增加趋势。研究认为,在干旱胁迫条件下,根施丙酸能够通过调控脯氨酸代谢过程中的合成和降解途径关键酶活性来维持叶片细胞内脯氨酸水平稳定,有效减轻叶片水分散失和过氧化伤害程度,从而提高冬小麦幼苗的抗旱性。  相似文献   

7.
以滁菊品种"金玉"幼苗为材料,通过日光温室内盆栽实验,在中度干旱胁迫条件下(土壤田间持水量的40%),研究叶面喷施外源褪黑素(MT,100μmol·L-1)对滁菊幼苗生长及生理生化特性的影响,探讨提高滁菊耐干旱性的新途径。结果表明:(1)与对照相比,干旱胁迫处理降低了滁菊叶片叶绿素含量、净光合速率和水分利用效率,提高了可溶性蛋白质、可溶性糖和脯氨酸含量,而叶片MDA含量和相对电导率显著增加,显著抑制了滁菊幼苗的生长。(2)在干旱胁迫条件下,外源MT可显著提高滁菊幼苗叶片脯氨酸、可溶性蛋白质和可溶性糖的含量,并显著降低了叶片相对电导率和MDA含量,使幼苗保持较高叶绿素含量和净光合速率。(3)与干旱胁迫处理相比,外源MT处理的滁菊地上部和根系干重、鲜重均显著增加。研究发现,外源褪黑素(MT)在一定程度上可通过促进滁菊幼苗渗透调节物质的积累,有效降低干旱胁迫对其细胞膜的伤害,维持其正常的细胞膜功能,保持其较高的光合速率和水分利用效率,从而增加其对干旱环境的适应性。  相似文献   

8.
4种阔叶幼苗对PEG模拟干旱的生理响应   总被引:10,自引:0,他引:10  
研究了PEG模拟干旱胁迫环境下的火力楠(Michelia macclurel)、尾叶桉(Eucalyptus urophylla)、枫香(Liquidambar formosana)、荷木(Schima superba)幼苗的生理变化。结果表明,干旱胁迫下,4种幼苗叶片的相对含水量小于对照,其中,尾叶桉和枫香下降明显;不同干旱胁迫条件下,4种树种幼苗叶片的相对电导率均显著大于对照,其中尾叶桉和枫香上升幅度大;干旱胁迫下的火力楠和荷木幼苗叶片的脯氨酸含量呈现波动,尾叶桉和枫香幼苗则显著大于对照;不同干旱胁迫时间下的幼苗叶片的叶绿素含量小幅波动;4个树种幼苗的过氧岐化酶(SOD)活性随胁迫时间增加而呈现先升后降的趋势,其中火力楠和荷木的幼苗的SOD活性持续维持在较高水平;荷木叶片的丙二醛(MDA)含量先升后降,最后和对照水平相近,其余幼苗的MDA含量均大于对照;干旱胁迫下4种幼苗叶片的可溶性糖含量增加幅度较大。主成分分析表明,4种幼苗的抗旱能力排序为荷木>火力楠>尾叶桉>枫香。  相似文献   

9.
为了探讨粗壮女贞(Ligustrum robustum)幼苗对持续干旱胁迫的适应能力、恢复能力及生理响应特征,采用温室盆栽方法模拟土壤干旱条件,分别对干旱胁迫5、10、15、20和25 d及胁迫后复水5、10、20 d的幼苗渗透调节物质含量、叶片相对电导率(REC)、水分饱和亏(WSD)、丙二醛(MDA)含量及保护酶活性的变化规律进行研究。结果表明:干旱胁迫对粗壮女贞叶片生理指标有显著影响,复水后,各指标均有向正常水平恢复的趋势。随着干旱时间的延长,粗壮女贞叶片脯氨酸(Pro)含量、REC、WSD等指标呈增加趋势;可溶性蛋白质含量、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性呈先升后降的变化,但两种保护酶活性增幅和响应时间不同,表现出不同的清除过氧化物功能;MDA含量呈"升-降-升"的波浪式趋势。干旱胁迫的程度不同,幼苗复水后各指标恢复能力和恢复程度各异,干旱时间越长,恢复需要的时间也越长,各指标恢复时间与干旱程度呈正相关。综合表明,土壤相对含水量为32.51%是粗壮女贞正常生长所需最低土壤含水量。  相似文献   

10.
水分胁迫对太阳扇扦插苗形态和生理特征的影响   总被引:2,自引:0,他引:2  
采用持续干旱和淹水处理,测定太阳扇的叶绿素、可溶性蛋白、可溶性糖、脯氨酸、丙二醛含量和抗氧化酶体系等指标的变化,分析太阳扇对不同程度水分胁迫响应特征的差异及形成的机制.结果表明:水分胁迫初期(5 d)内,太阳扇受害指数和大部分生理生化指标与对照差异不显著;随着干旱胁迫强度的增加和时间的延长,太阳扇产生较严重的伤害直至最后死亡,其受害指数、脯氨酸含量、SOD、POD、CAT活性均急剧上升,叶绿素含量明显减少,而丙二醛、可溶性蛋白、可溶性糖含量呈先减少而后增加的趋势;淹水胁迫下,太阳扇可溶性糖和叶绿素含量呈先下降到实验后期有所上升,丙二醛和可溶性蛋白含量呈降-升-降的趋势,SOD、POD活性实验初期增加然后有所减少,CAT活性和脯氨酸含量均呈持续上升趋势;持续干旱和淹水胁迫对太阳扇形态和生理特征造成严重影响,太阳扇对淹水胁迫的响应不及干旱胁迫,持续干旱对扦插苗伤害较大,太阳扇基本丧失自我调节适应不良环境的能力.  相似文献   

11.
Some researchers have attributed flood tolerance of woody plants to air entering the shoot through stems, leaves, or lenticels and diffusing to the roots to sustain aerobie respiration. The purpose of this study was to determine if internal aeration of roots by lower stems, changes in gross morphology of lower stems, or both, contribute to flood tolerance of certain tree species. Greenhouse-grown seedlings of red maple ( Acer rubrum L.) and river birch ( Betula nigra L.) tolerated at least 30 days of flooding, where as sugar maple ( Acer saccharum Marsh) and European white birch (also called silver birch, Betula pendula Roth) were intolerant. Flood treatment induced lentieel intumescences and adventitious root formation on red maple stems, but only adventitious roots formed on river birch stems. Stem morphology of sugar maple and European birch was unchanged by flooding. Flood stress decreased oxygen consumption capacity of excised roots from both tolerant and intolerant species. Exclusion of oxygen from the lower stems of flooded red maple and river birch prevented lenticel intumescence and adventitious root formation, but flood tolerance and root respiration capacity were unchanged. Neither internal aeration nor changes in stem morphology appear to account for flood tolerance of red maple and river birch.  相似文献   

12.
Abstract. Seasonal changes in photosynthesis, leaf nitrogen (N) contents and leaf mass per area (LMA) were observed over three growing seasons in open-grown sun-lit leaves of red maple ( Acer rubrum ), sugar maple ( A. sacchamm ) and northern pin oak ( Quereus ellipsoidalis ) trees in southern Wisconsin. Net photosynthesis and leaf N were highly linearly correlated on both mass and area bases within all species from late spring until leaf senescence in fall. Very early in the growing season leaves had high N concentrations, but low photosynthetic rates per unit leaf N, suggesting that leaves were not fully functionally developed at that time. Leaf N per unit area and LMA had nonparallel seasonal patterns, resulting in differing relationships between leaf N/area and LMA in the "early versus late growing season. As a result of differences in seasonal patterns between leaf N/area and LMA, net photosynthesis/area was higher for a given LMA in the spring than fall, and the overall relationships between these two parameters were poor.  相似文献   

13.
We evaluated the association of red coloration with senescence in sugar maple (Acer saccharum Marsh.) leaves by assessing differences in leaf retention strength and the progression of the abscission layer through the vascular bundle of green, yellow, and red leaves of 14 mature open-grown trees in October 2002. Computer image analysis confirmed visual categorization of leaves as predominantly green, yellow or red, and chemical quantification of leaf pigment concentrations verified that leaf color reflected underlying differences in leaf biochemistry. Significantly lower chlorophyll concentrations within red and yellow leaves indicated that senescence was more advanced in leaves from these color categories relative to green leaves. Among leaf types, only red leaves contained high concentrations of anthocyanins. There were significant differences in leaf retention capacity among color categories, with the petioles of green leaves being the most firmly attached to twigs, followed by red and then yellow leaves. Microscopic analysis indicated that yellow leaves had the most advanced extension of the abscission layer through the vasculature, with green and red leaves having significantly less abscission layer progression than yellow. A more limited progression of the abscission layer through vascular bundles may be evidence of delayed leaf senescence that could extend resorption of mobile leaf constituents. Together, results from this study suggest an association between leaf anthocyanin content and functional delays in senescence.  相似文献   

14.
The effect of leaf species composition on decomposition patterns was examined in a coastal plain stream. Red maple leaves (Acer rubrum) decomposed at the same rate separately or when mixed with cypress leaves (Taxodium distichum). Cypress addition increased structural integrity but its effects differed between sites with different hydrologic regimes. Invertebrate communities varied slightly between mixed and single species packs, however invertebrates did not appear to be the primary agent of decomposition. Mixed species packs may be an alternative method to fine mesh bags for studying processing of small, narrow leaves in a more realistic manner.  相似文献   

15.
The research described in this paper represents a part of a much broader research project with the general objective of describing the effects of elevated [CO2] and temperature on tree growth, physiological processes, and ecosystem-level processes. The specific objective of this research was to examine the below-ground respiratory responses of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) seedlings to elevated atmospheric [CO2] and temperature. Red maple and sugar maple seedlings were planted in the ground in each of 12 open-top chambers and exposed from 1994 through 1997 to ambient air or air enriched with 30 Pa CO2,< in combination with ambient or elevated (+4 °C) air temperatures. Carbon dioxide efflux was measured around the base of the seedlings and from root-exclusion zones at intervals during 1995 and 1996 and early 1997. The CO2 efflux rates averaged 0.4 μmol CO2 m-2 s-1 in the root-exclusion zones and 0.75 μmol CO2 m-2 s-1 around the base of the seedlings. Mineral soil respiration in root-exclusion zones averaged 12% higher in the high temperature treatments than at ambient temperature, but was not affected by CO2 treatments. The fraction of total efflux attributable to root + rhizosphere respiration ranged from 14 to 61% in measurements made around red maple plants, and from 35 to 62% around sugar maple plants. Root respiration rates ranged from 0 to 0.94 μmol CO2 s-1 m-2 of soil surface in red maple and from 0 to 1.02 in sugar maple. In both 1995 and 1996 root respiration rates of red maple were highest in high-CO2 treatments and lowest in high temperature treatments. Specific red maple root respiration rates of excised roots from near the soil surface in 1996 were also highest under CO2 enrichment and lowest in high temperature treatments. In sugar maple the highest rates of CO2 efflux were from around the base of plants exposed to both high temperature and high-CO2, even though specific respiration rates were< lowest for this species under the high temperature and CO2 enrichment regime. In both species, patterns of response to treatments were similar in root respiration and root mass, indicating that the root respiration responses were due in part to differences in root mass. The results underscore the need for separating the processes occurring in the roots from those in the forest floor and mineral soil in order to increase our understanding of the effects of global climate change on carbon sequestration and cycling in the below-ground systems of forests.  相似文献   

16.
Variation in tolerance to nutrient limitations may contribute to the differential success of sugar maple ( Acer saccharum Marsh.) and red maple ( Acer rubrum L.) on acid soils. The objectives of this study were to examine these relationships as influenced by light environment and test whether sensitivity to nutrient stress is mediated by oxidative stress. First-year sugar maple and red seedlings were grown on forest soil cores contrasting in nutrient availability under high or low light intensity. Foliar nutrition, photosynthesis, growth and antioxidant enzyme activity were assessed. Photosynthesis and growth of sugar maple were significantly lower on nutrient-poor soils and were correlated with leaf nutrient status with Ca and P having the strongest influence. For red maple, only chlorophyll content showed sensitivity to the nutrient-poor soils. High light exacerbated the negative effects of nutrient imbalances on photosynthesis and growth in sugar maple. Antioxidant enzyme activity in sugar maple was highest in seedlings growing on nutrient-poor soils and was inversely correlated with photosynthesis, Ca, P, and Mg concentrations. These results suggest that: (1) sugar maple is more sensitive to nutrient stresses associated with low pH soils than red maple; (2) high light increases sugar maple sensitivity to nutrient stress; (3) the negative effects of nutrient imbalances on sugar maple may be mediated by oxidative stress.  相似文献   

17.
The nutritional benefits that mycorrhizal associations provide to plants may be constrained by acidic soil conditions resulting in decreased photosynthetic function. Sugar maple (Acer saccharum) and red maple (Acer rubrum) seedlings were grown on a native acidic (pH 4.1) soil both unamended and amended with base cations (pH 6.2). In a second study a fungicide treatment was included. Foliar nutrition, mycorrhizal colonization, photosynthesis and their relationships were assessed. On the native soil, red maple maintained higher levels of mycorrhizal colonization and photosynthesis than sugar maple but showed little response to base cation amendments. Mycorrhizal colonization and photosynthesis of sugar maple increased significantly in response to base cation amendments. Correlations were observed among mycorrhizal colonization, foliar nutrition and photosynthesis. The fungicide treatment indicated that 50% of the base cation-induced increase in sugar maple photosynthesis was mycorrhiza related. The results suggest that base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. Red maple exhibits much less sensitivity to these same edaphic conditions.  相似文献   

18.
The influence of pre-measurement storage length and season of harvest of stem segment samples on hydraulic conductance and percentage embolism was determined for two tree species because no published guidelines exist concerning storage. Stem sections from Fraxinus americana L. 'Autumn Applause' (white ash) and Acer rubrum L. x saccharinum L. 'Autumn Blaze' (hybrid red maple) were collected from well-established trees in fall 1995 (October), spring 1996 (April), and summer 1996 (July). Ends of stem sections collected in the fall were either covered with wax or left exposed. Entire sections from all dates were placed in closed plastic bags to prevent desiccation during transport and subsequent storage. Stem sections were either analyzed immediately (0 storage) or held at 2 degrees C for 2 or 4 days. Hydraulic conductance before embolisms were cleared with positive pressure (initial k(h)), hydraulic conductance after embolisms were cleared (maximum k(h)), and percentage embolism were similar for all pre-embolism measurement storage lengths within each of the three seasonal sampling periods for hybrid red maple and spring- and summer-collected white ash. Fall-collected white ash samples with 0 storage had higher initial k(h), and percentage embolism increased if samples were stored. Embolism was greatest for summer-collected samples and lowest for spring-collected samples for hybrid red maple, but values were similar for white ash. Stem covering did not influence measured parameters. Our data indicate that hybrid red maple stem segments can be stored without significant loss of hydraulic conductance for up to 4 days, but white ash should not be stored in the fall. Unless maximum levels of native embolism have been reached, as determined from laboratory analysis, stem segments of species on which storage data are not available should be processed as soon as possible.  相似文献   

19.
Decomposition of terrestrial litterfall, that could enter a lake, was investigated at three depths within the lake in question using leaves of red maple (Acer rubrum). Sixty litter bags each containing 10 g dry weight of maple leaves were anchored at 1 m, 4 m and 12 m in East Twin Lake. At monthly intervals five bags were harvested at each level and dry weight changes noted. Results indicate little difference in decomposition between depths over the winter months. Beginning in May, however, significant differences were noted between 1 m and all other depths for the remainder of the experimental period. Maples lost 100% of weight at 1 m, 54% at 4 m, and 55% at 12 m over the experimental period. The rate of decomposition over the total experiment period was approximately .03 g da–1 at 1 m and .015 g da–1 at the 4 and 12 m depths. These results are discussed in terms of regulation of decomposition, position of decomposition and contribution to lake metabolism.  相似文献   

20.
Temporal and spatial patterns of specific leaf weight (SLW, g/m2) were determined for deciduous hardwood tree species in natural habitats in northern lower Michigan to evaluate the utility of SLW as an index of leaf photosynthetic capacity. No significant diurnal changes in SLW were found. Specific leaf weight decreased and then increased during leaf expansion in the spring. Most species, especially those located in the understory, then had relatively constant SLW for most of the growing season, followed by a decline in SLW during autumn. Specific leaf weight decreased exponentially down through the canopy with increasing cumulative leaf area index. Red oak (Quercus rubra), paper birch (Betula papyrifera), bigtooth aspen (Populus grandidentata), red maple (Acer rubrum), sugar maple (A. saccharum), and beech (Fagus grandifolia) generally had successively lower SLW, for leaves at any one level in the canopy. On a given site, comparisons between years and comparisons of leaves growing within 35 cm of each other showed that differences in SLW among species were not due solely to microenvironmental effects on SLW. Bigtooth aspen, red oak, and red maple on lower-fertility sites had lower SLW than the same species on higher-fertility sites. Maximum CO2 exchange rate, measured at light-saturation in ambient CO2 and leaf temperatures of 20 to 25 C, increased with SLW. Photosynthetic capacities of species ranked by SLW in a shaded habitat suggest that red oak, red maple, sugar maple, and beech are successively better adapted to shady conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号