首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two modifications of the Ovsynch protocol, GnRH + TAI after PGF 48 h (CO-48) or 72 h (CO-72), were compared with the original protocol (OVS: GnRH–7 d–PGF–2 d–GnRH–16 h–TAI) to study their effects on reproductive performance in 785 lactating dairy cows (Holstein Friesian, Bos Taurus). Results showed that more cows (P < 0.001) returned to estrus within a week after TAI with CO-48 treatment compared with that in OVS and CO-72 treatments. Pregnancy rates were greater (P < 0.001) for the CO-72 cows than those for both OVS and CO-48 treatments and for primiparous cows compared with multiparous cows. Moreover, pregnancy rates were lower in summer compared with those in winter. Pregnancy losses for cows in both CO-48 and CO-72 were greater (P < 0.05) than that for cows in OVS treatment. Pregnancy losses were greater in summer (P < 0.001) than in winter and for multiparous cows (P < 0.001) than for primiparous cows. In conclusion, primiparous and winter-bred cows had greater pregnancy rates and fewer pregnancy losses than those of multiparous cows and summer-bred cows, respectively. Because of the presence of significant treatment, parity, and season interactions, TAI with ovulation synchronization protocols should be tailored according to the season and parity. CO-72 is recommended for primiparous cows but not for multiparous cows, and CO-48 is not recommended for synchronization. Furthermore, cows that exhibited estrus at any time were inseminated to improve pregnancy rates in ovulation synchronization protocols.  相似文献   

2.
The effect of intravenous cloprostenol treatment at the time of insemination on reproductive performance was consecutively evaluated in three different subpopulations of high producing lactating dairy cows: Study (1) early postpartum synchronized and fixed-time inseminated (about 50 days in milk) cows (n = 379: 187 control and 192 treated cows); Study (2) presumed high fertility cows first inseminated between 90 and 120 days postpartum (n = 248: 124 control and 124 treated cows); and Study (3) heat stressed repeat breeder cows (n = 183: 93 control and 90 treated cows). Data were analyzed using multiple regression methods. Study 1: Parity (primiparous versus multiparous), milk production, body condition score at AI, insemination season (cool versus warm period) and treatment were included in the analysis as potential factors affecting ovulation, double ovulation, return to estrus, and pregnancy to first AI and to second AI (first AI plus return AI) rates. Logistic regression analysis indicated that the final model for ovulation rate only included the interaction (P = 0.002) between insemination season and treatment. Cloprostenol treatment at insemination led to a 4.2-fold increase in the ovulation rate in cows inseminated during the warm period. There were no significant effects of treatment, parity, milk production, body score or the insemination season on the return to estrus rate. The only variables included in the final logistic model for double ovulation and pregnancy to first AI rates were treatment and season, respectively. Treatment led to a 2.6-fold increase (P = 0.001) in the double ovulation rate, whereas cows inseminated in the warm period were 2.1 times less likely (P = 0.007) to become pregnant at first AI compared to those inseminated in the cool season. The variables included in the final logistic model for the pregnancy rate to second AI were treatment and season. Cloprostenol given at AI increased the risk of pregnancy 1.9 times (P = 0.002), and cows inseminated during the warm season were two times less likely to become pregnant (P = 0.003). No significant interactions were found among these three dependent variables (double ovulation and pregnancy to first and to second AI rates). Study 2: Logistic regression analysis of all the dependent variables: return to estrus, and pregnancy to first and to second AI (first AI plus return to AI) rates indicated no significant effects of treatment, parity, days in milk, milk production or body score at AI. No significant interactions were found. Study 3: The final model for the pregnancy rate only included the interaction between parity (primiparous versus multiparous) and treatment. Days in milk, milk production and insemination number showed no significant effect on pregnancy rate. Cloprostenol treatment at insemination increased the pregnancy rate in primiparous repeat breeder cows (odds ratio: 3.6). The treatment group and parity showed significant (P < 0.0001) interaction. This interaction suggests that cloprostenol treatment of primiparous cows at insemination might enhance pregnancy yet have no effect in multiparous cows. Our findings indicate that cloprostenol administered at insemination promotes ovulation and double ovulation in lactating dairy cows. Cloprostenol treatment showed no benefit in cows with acceptable reproductive performance, suggesting that cloprostenol treatment at AI may only be useful in cows in which stress factors affect ovulation and in repeat breeder cows.  相似文献   

3.
Ovsynch protocols are used to increase service rate and decrease days open and cullings for infertility. Recent reports have indicated better results after Ovsynch in primiparous than in older cows. However, this was not observed in all investigations on the subject. The objective of the study was to evaluate differences between primiparous and multiparous cows after synchronization of ovulation with an Ovsynch protocol in six trials. A total of 1584 cows (583 primiparous and 1001 multiparous cows, respectively) on three dairy farms were synchronized with an Ovsynch protocol consisting of a GnRH-analogue at Days 0 and 9, and a prostaglandin F(2alpha) analogue on Day 7. AI was carried out in all cows 16-20 h after the last treatment. Cows were categorized into primiparous and multiparous cows for analysis. Conception rate (CR) to timed AI, to further AI, overall conception rate and proportion of cows pregnant by 200 days in milk were compared between the age groups. Finally, two logistic regression models were calculated with conception to first service and conception by 200 DIM as the outcome variables. Independent variables were trial (categorical) and age group (primiparous versus multiparous). Conception rates to TAI were higher in primiparous than in older cows (37.9% versus 31.6%, P=0.015). Likewise pregnancy rates by 200 DIM were higher in primiparous cows (81.8% versus 75.4%, P=0.003). However, the extent of the difference varied between trials. Results indicate that Ovsynch protocols are more effective in primiparous than in older cows.  相似文献   

4.
A strategy widely adopted in the modern dairy industry is the introduction of postpartum health monitoring programs by trained farm personnel. Within these fresh cow protocols, various parameters (e.g., rectal temperature, attitude, milk production, uterine discharge, ketones) are evaluated during the first 5 to 14 days in milk (DIMs) to diagnose relevant diseases. It is well documented that 14% to 66% of healthy cows exhibit at least one temperature of 39.5 °C or greater within the first 10 DIM. Although widely adopted, data on diagnostic performance of body temperature (BT) measurement to diagnose infectious diseases (e.g., metritis, mastitis) are lacking. Therefore, the objective of this study was to identify possible factors associated with BT in postpartum dairy cows. A study was conducted on a commercial dairy farm including 251 cows. In a total of 217 cows, a vaginal temperature logger was inserted from DIM 2 to 10, whereas 34 cows did not receive a temperature logger as control. Temperature loggers measured vaginal temperature every 10 minutes. Rectal temperature was measured twice daily in all cows. On DIM 2, 5, and 10, cows underwent a clinical examination. Body temperature was influenced by various parameters. Primiparous cows had 0.2 °C higher BT than multiparous cows. Multiparous cows that calved during June and July had higher BT than those that calved in May. In primiparous cows, this effect was only evident from DIM 7 to 10. Furthermore, abnormal calving conditions (i.e., assisted calving, dead calf, retained placenta, twins) affected BT in cows. This effect was more pronounced in multiparous cows. Abnormal vaginal discharge did increase BT in primiparous and multiparous cows. Primiparous cows suffering from hyperketonemia (beta-hydroxybutyrat ≥ 1.4 mmol/L) had higher BT than those not affected. In multiparous cows, there was no association between hyperketonemia and BT. The results of this study clearly demonstrate that BT is influenced by various parameters in dairy cows. Therefore, these parameters have to be considered when interpreting measurements of BT in dairy cows. This information helps to explain the high incidence of type I and II errors when measuring BT and clearly illustrates that measures of BT should not be used as a single criterion to decide whether or not to provide antibiotic treatment to dairy cows. However, research-based test characteristics of other parameters (e.g., vaginal discharge) alone or in combination with BT are still lacking.  相似文献   

5.
The objective of Experiment 1 was to compare the effects of estradiol benzoate (EB) given 0 or 24h after the end of a progestagen treatment on ovulation and CL formation in anestrous cows. Twenty cows were treated with an intravaginal sponge containing 250 mg of medroxiprogesterone acetate (MPA). At sponge insertion, each cow received 3 mg EB and 10 mg MPA im. At device removal, cows received 0.7 mg EB either at that time (EB0) or 24h later (EB24). Ultrasound examinations and blood sampling to determine plasma progesterone concentrations were performed to detect ovulation and CL formation. Ovulation occurred in 77.8 and 81.8% cows in the EB0 and EB24 groups, respectively. Diameter of the ovulatory follicle (EB0 = 10.9 +/- 0.5mm; EB24 = 12.1 +/- 0.8 mm; P = 0.26) and the interval from sponge removal to ovulation (median = 3 days; P = 0.64) did not differ between treatments. Among the cows that ovulated (n = 16), short-lived CL were present in 2/7 and 2/9 cows in the EB0 and EB24 groups, respectively. Plasma progesterone concentrations and CL area did not differ between treatments (P > 0.05). In Experiment 2, cows were treated with the same protocol as in Experiment 1, but at sponge withdrawal all cows received 250 microg cloprostenol and timed artificial insemination (TAI) was performed 48 h after sponge removal. In Replicate 1 (n = 204 multiparous cows), pregnancy rates were 45.0 and 47.5% for EB0 and EB24, respectively (P > 0.05). In Replicate 2 (n = 69 primiparous cows) pregnancy rate did not differ between EB0 and EB24 (51.4% versus 52.9%). In conclusion, EB given 0 or 24h after the end of a progestagen treatment had the same effect on ovulation rate, time to ovulation, diameter of the ovulatory follicle, incidence of short-lived CL, luteal tissue area, and plasma progesterone concentrations of normal lifespan CL, and pregnancy rate after TAI in suckled beef cows.  相似文献   

6.
This study was designed to compare two timed insemination protocols, in which progesterone, GnRH and PGF2alpha were combined, with the Ovsynch protocol in presynchronized, early postpartum dairy cows. Reproductive performance was also evaluated according to whether cows showed high or low plasma progesterone concentration, at the onset of treatment. One hundred and six early postpartum dairy cows were presynchronized with two cloprostenol treatments given 14 days apart, and then assigned to one of the three treatment groups. Treatments for the synchronization of estrus in all three groups started 7 days after the second cloprostenol injection, which was considered Day 0 of the actual treatment regime. Cows in the control group (Ovsynch, n=30) were treated with GnRH on Day 0, PGF2alpha on Day 7, and were given a second dose of GnRH 32 h later. Cows in group PRID (n=45) were fitted with a progesterone releasing intravaginal device (PRID) for 9 days, and were given GnRH at the time of PRID insertion and PGF2alpha on Day 7. In group PRID/GnRH (n=31), cows received the same treatment as in the PRID group, but were given an additional GnRH injection 36 h after PRID removal. Cows were inseminated 16-20 h after the administration of the second GnRH dose in the Ovsynch group, and 56 h after PRID removal in the PRID and PRID/GnRH groups. Ovulation rate was determined on Day 11 postinsemination by detecting the presence of a corpus luteum in the ovaries. Lactation number, milk production, body condition at the onset of treatment and treatment regime were included as potential factors influencing ovulation and pregnancy after synchronization. Logistic regression analysis for cows with high and low progesterone concentration on treatment Day 0 revealed that none of the factors included in the models, except the interaction between progesterone and treatment regime, influenced the risk of ovulation and pregnancy significantly. In cows with high progesterone concentration at treatment onset, Ovsynch treatment resulted in a significantly improved pregnancy rate over values obtained following PRID or PRID/GnRH treatment. In cows with low progesterone concentration, PRID or PRID/GnRH treatment led to markedly increased ovulation and pregnancy rates with respect to Ovsynch treatment. These findings suggest the importance of establishing ovarian status in early postpartum dairy cows before starting a timed AI protocol, in terms of luteal activity assessed by blood progesterone.  相似文献   

7.
The objectives of this study were to evaluate factors associated with resumption of postpartum estrous cycles and embryonic survival in lactating dairy cows. Holstein cows, 6396 from four dairy farms were evaluated to determine the relationships among parity, body condition score (BCS) at calving and at AI, season of year when cows calved, and milk yield on resumption of postpartum estrous cycles by 65 days postpartum, and all the previous variables, estrual or anestrus and AI protocol on conception rates and embryonic survival at the first postpartum insemination. Cows had their estrous cycle pre-synchronized with two PGF injections given 14 days apart and were inseminated between 69 and 82 days postpartum following either an estrous or ovulation synchronization protocol initiated 12–14 days after the presynchronization. Blood was sampled and analyzed for progesterone twice, 12–14 days apart, to determine whether cows had initiated onset of estrous cycles after calving. Cows were scored for body condition in the week after calving, and again at AI, between 69 and 82 days postpartum. Pregnancy was diagnosed at 30 ± 3 and 58 ± 3 days after AI. Farm influenced all reproductive outcomes evaluated. More (P < 0.0001) multiparous than primiparous cows had initiated estrous cycles. Onset of estrous cycles was also influenced (P < 0.01) by BCS at calving and at AI, BCS change, season, and milk yield. More (P < 0.001) cows that had initiated estrous cycles than anestrous cows were pregnant at 30 and 58 days after AI, but anestrus did not affect pregnancy loss. Conception rates were also influenced (P < 0.01) by parity, BCS at calving and AI, BCS change, and season; however, milk yield and insemination protocol were not associated with conception rates at 30 and 58 days after AI. Factors that reduced conception rate on day 30 after AI also increased pregnancy loss between 30 and 58 days of gestation. Improving BCS at calving and AI, minimizing losses of BCS after calving, and hastening onset of estrous cycles early postpartum are all expected to increase conception because of enhanced embryonic survival.  相似文献   

8.
It is well observed that feeding energy-dense diets in dairy cows during the dry period can cause metabolic imbalances after parturition. Especially dairy cows with high body condition score (BCS) and fed an energy-dense diet were prone to develop production diseases due to metabolic disturbances postpartum. An experiment was conducted to determine the effects of an energy-dense diet and nicotinic acid (NA) on production and metabolic variables of primiparous and multiparous cows in late pregnancy and early lactation which were not pre-selected for high BCS. Thirty-six multiparous and 20 primiparous German Holstein cows with equal body conditions were fed with energy-dense (60% concentrate/40% roughage mixture; HC group) or adequate (30% concentrate/70% roughage mixture; LC group) diets prepartum. After parturition, concentrate proportion was dropped to 30% for all HC and LC groups and was increased to 50% within 16 days for LC and within 24 days for HC cows. In addition, half of the cows per group received 24 g NA supplement per day and cow aimed to attenuate the lipid mobilisation postpartum. Feeding energy-dense diets to late-pregnant dairy cows elevated the dry matter (p < 0.001) and energy intake (p < 0.001) as well as the energy balance (p < 0.001) without affecting the BCS (p = 0.265) during this period. However, this did not result in any metabolic deviation postpartum as the effects of prepartum concentrate feeding were not carried over into postpartum period. Multiparous cows responded more profoundly to energy-dense feeding prepartum compared with primiparous cows, and parity-related differences in the transition from late pregnancy to lactation were obvious pre- and postpartum. The supplementation with 24 g NA did not reveal any effect on energy metabolism. This study clearly showed that energy-dense feeding prepartum did not result in metabolic imbalances postpartum in multiparous and primiparous cows not selected for high BCS. A genetic predisposition for an anabolic metabolic status as indicated by high BCS may be crucial for developing production diseases at the onset of lactation.  相似文献   

9.
The objective of this study was to evaluate whether administration of GnRH postinsemination would improve reproductive performance in heat-stressed dairy cattle. Estrous cycles of Holstein cows were synchronized using the OvSynch protocol and cows were artificially inseminated. Cows were then administered the following treatments: control (no GnRH; n=37), GnRH (100 microg) on Day 5 (GnRH-D5; n=34), or GnRH (100 microg) on Day 11 (GnRH-D11; n=34) postinsemination. Cows were provided access to both fans and sprinklers, and environmental data was collected hourly. Rectal temperatures and blood samples were obtained from cows on Days -9, -2, 0 (AI) and on alternate days from Day 5 to Day 19 postinsemination. Blood serum was collected for the analysis of progesterone (P(4)) by RIA. In a subset of cows (n=6/treatment) ultrasonography was performed on alternate days from Day 5 to Day 19 postinsemination to assess numbers of corpora lutea (CL) and CL cross-sectional areas. Pregnancy status of cows was confirmed at Day 30 postinsemination. Environmental data indicated that cows experienced mild heat stress during the trials (mean daily THI=73-77). Serum P(4) was greater (P<0.05) after Day 9 for GnRH-D5 cows and after Day 15 for GnRH-D11 cows through Day 19 postinsemination. The number of CLs present for GnRH-D5 cows was greater (P<0.05) on Day 17 than in either the control or GnRH-D11 treatment groups. On Day 17 postinsemination, both the GnRH-D5 and GnRH-D11 cows were observed to have greater (P<0.05) total CL tissue area than control cows. The interval from insemination to when serum P(4) returned to <1 ng/ml (i.e. luteolysis and return to estrus) did not differ (P>0.10) among treatment groups. Control cows (19%) tended to exhibit lower pregnancy rates (P<0.08) compared to the GnRH-D5 and GnRH-D11 treatment groups combined (35%). In summary, the treatment of heat-stressed dairy cows with GnRH postinsemination (Day 5 or 11) results in the appearance of more CL tissue, increased serum concentrations of P(4) and a tendency toward greater pregnancy rates.  相似文献   

10.
The aim of this study was to determine the relationship between energy status before calving and calf birth weight and their potential effects on interval between calving and first ovulation. Sixty-nine Limousine, suckled beef cows were sampled weekly over a 3-yr period during the last 2 m.o. of pregnancy to determine the concentrations of nonesterified fatty acids (NEFA), beta-3-hydroxybutyrate (beta-OHB), glucose and glycerol. After parturition, progesterone concentrations were measured weekly to determine time of resumption of ovulation. Cows were allotted to 3 groups according to calf birth weight (Heavy: > 44 kg, n = 37; Medium: 39 to 43 kg, n = 56; and Light: < 38 kg, n = 45) and to postpartum ovarian resumption of cyclicity (Late: > 11 wk, n = 41; Mid: 7 to 10 wk, n = 57; and Early: < 6 wk, n = 40). Puerperium glycaemia of the dams was steady state (0.66 +/- 0.03 g/L) and was not related to calf birth weight. Plasma NEFA, beta-OHB and glycerol values were higher (P < 0.05) in Heavy than in Medium and Light group dams during the last 4 wk of pregnancy. Interval between calving and first ovulation was significantly longer for primiparous than for multiparous cows (respectively, 9.9 +/- 2.0 and 7.7 +/- 1.4 wk; P < 0.05). Calf birth weight was not related to time of first ovulation. Late primiparous cows had higher NEFA plasma concentrations than Mid and Early group primiparous cows during the last 4 wk of pregnancy, whereas NEFA plasma concentrations were not related to interval between calving and first ovulation in multiparous cows. Thus, lipomobilization increased with calf birth weight during the last 4 wk of pregnancy. High level of body reserves mobilization was associated with delayed first ovulation in primiparous but not in multiparous cows.  相似文献   

11.
The present study examined ovarian changes preceding the resumption of the ovarian cycle in postpartum dairy cows with different parities under similar body nutritional conditions. In postpartum primi- (n=6), bi- (n=4), and multiparous (n=6) Holstein dairy cows, ovarian ultrasonographic observations starting at 7 days after calving were performed every other day and then daily after the confirmation of clinical signs of oestrus for the detection of postpartum first ovulation. Blood samples were collected at the same time as ultrasonography and analyzed for oestradiol and progesterone to monitor ovarian activity. To evaluate the nutritional condition of the cows, body weight and body condition score (BCS, 1=emaciated to 5=obese) were measured weekly and blood samples for the analysis of glucose, insulin, and non-esterified fatty acid (NEFA) were collected at the same time until postpartum second ovulation. Dominant follicles (>8mm in diameter) of the first follicular wave were detected at 7 days after calving in all cows. The first wave follicle ovulated in five of six multiparous cows, whereas no first wave follicle ovulated in any of the primiparous cows. The days to first ovulation after calving in primiparous cows (31.8+/-8.3 days) were significantly greater (p<0.05) than those in multiparous cows (17.3+/-6.3 days), but were not significantly different from biparous cows (28.8+/-8.6 days). There was a significant relationship between parity and days to first ovulation after calving (p<0.05). BCS was maintained at a level of more than 2.5 during the postpartum period in all cows and there was no influence of parity on postpartum changes in BCS, glucose, insulin, or NEFA throughout the experiment. The present study demonstrated a negative relationship between parity and number of days from calving to first ovulation in dairy cows under similar body nutritional conditions. It is possible that the influence of parity on the resumption of ovarian cycle is modulated by the factors different from the nutrition-related changes during the postpartum period in dairy cows.  相似文献   

12.
To determine the efficacy of reducing the dosage of GnRH used in a protocol for synchronization of ovulation and timed AI, primiparous and multiparous lactating Holstein cows (n=237) were randomly assigned to 1 of 2 treatment groups. Ovulation was synchronized for cows in the first group using intramuscular injections of GnRH and PGF2 as follows: Day 0, 100 μg GnRH; Day 7, 25 mg PGF2; Day 9, 100 μg GnRH. Ovulation was synchronized in the second group of cows using the same injection schedule and dosage of PGF2 but only 50 μg GnRH per injection. All cows underwent a timed AI at 12 to 18 h after the second GnRH injection. The proportion of cows ovulating in response to the second GnRH injection (synchronization rate) and pregnancy status at 28 and 56 d post AI were determined using transrectal ultrasonography. The synchronization rate, double-ovulation rate, conception rate at 28 and 56 d post AI, and pregnancy loss from 28 to 56 d post AI did not differ statistically between treatment groups. For all cows, synchronization rate was 84.0%, and double-ovulation rate was 14.1%. Conception rates calculated using all cows receiving synchronization of ovulation were 41.1% at 28 d and 34.4% at 56 d post AI. Conception rates calculated for only synchronized cows were 47.6% at 28 d and 40.1% at 56 d post AI. For all cows, pregnancy loss from 28 to 56 d post AI was 13.5%, with an attrition rate of 0.5% per day. Estimated savings in hormone costs using 50 rather than 100 μg GnRH per injection for synchronizing ovulation were $6.40 per cow and $20.27 per pregnancy. Thus, decreasing the dosage of GnRH used for synchronization of ovulation and timed AI in lactating dairy cows reduces synchronization costs per cow and per pregnancy without compromising the efficacy of the synchronization protocol.  相似文献   

13.
An experiment was conducted to investigate the potential of chronic delivery of a potent GnRH agonist (deslorelin) via subcutaneous implants to delay the resumption of ovulatory cycles in postpartum dairy cattle. Cows received either a single deslorelin implant (n=40; DES) within 7 days of calving or were untreated (n=24; CON). Blood samples were collected thrice weekly during the period the implants were in place. Plasma concentrations of progesterone (P4) and 17beta-oestradiol (E2) were measured along with selected serum metabolites. Implants were removed after 28 days and cattle monitored daily for behavioral oestrus. Serial weekly blood samples were collected to detect the occurrence of ovulation. Cows were artificially inseminated as they were detected in oestrus from 30 days after implant removal. Pregnancy status was subsequently determined by manual palpation of uterine contents at strategic intervals.Insertion of implants induced ovulation in 3/40 cows as determined by a rise in progesterone 7 days later. Deslorelin implants delayed the onset of ovulatory cycles compared with untreated herdmates (mean 43.4+/-4.2 versus 57.3+/-1.6 days postpartum; P<0.001). A noticeable delay of at least 12 days was observed between implant removal and the first animals ovulating. Mean plasma E2 concentrations during the period the implants were in place were similar for DES and CON cows that experienced a prolonged spontaneous postpartum anoestrus (low P4 >60 days), although both groups had concentrations only 20% of CON cows that had ovulated prior to 30 days postpartum.The patterns of recovery following implant removal were highly variable. A number of DES cows showed a low and transient rise in plasma progesterone around 21 days after implant removal. Some cows displayed oestrus but did not appear to form a fully functional corpus luteum with this phenomenon being more prevalent among DES cows (7 of 37 versus 1 of 21; P<0.05). Overall, significantly more DES cows were detected in oestrus without ovulating compared to CON cows. Final pregnancy rates did not differ between DES and CON groups. The mean time to conception for DES cows was longer (21.2+/-5.6 versus 41.1+/-7.4 days, CON versus DES; P<0.01). This difference was not present if the time from first ovulation to conception was compared (50.5+/-5.3 versus 43.5+/-9.3 days, CON versus DES; P>0.05). Deslorelin implants provided a reliable method of inducing anoestrus when treatment was initiated prior to 3 days postpartum. A variable pattern of recovery was observed which delayed conception but did not ultimately reduce the final proportion pregnant at the completion of mating. The study demonstrates the potential of GnRH agonists to control postpartum reproductive function to manipulate the fertility of dairy cows.  相似文献   

14.

Background  

Objectives of the study were to document the impact of some management factors on the occurrence of clinical mastitis in primiparous dairy cows and to identify common udder pathogens of clinical mastitis in freshly calved heifers and multiparous cows on the day of calving.  相似文献   

15.
Our objective was to determine whether rates of luteolysis or pregnancy differed in lactating dairy cows of known progesterone status and either known or unknown luteal status after either cloprostenol or dinoprost was injected as part of a timed-insemination program. In Experiment 1, 2358 lactating dairy cows in six herds were given two injections of PGF 14 d apart (Presynch), with the second injection given 12 to 14 d before the onset of a timed AI protocol (Ovsynch). Cows (n = 1094) were inseminated when detected in estrus after the Presynch PGF injections. Cows not inseminated (n = 1264) were enrolled in the Ovsynch protocol and assigned randomly to be treated with either cloprostenol or dinoprost as part of the timed-AI protocol. In cows having pretreatment concentrations of progesterone ≥ 1 ng/mL and potentially having a functional corpus luteum (CL) responsive to cloprostenol (n = 558) or dinoprost (n = 519), dinoprost increased (P < 0.05) luteal regression from 86.6 to 91.3%. Despite a significant increase in luteolysis, pregnancies per AI did not differ between luteolytic agents (dinoprost = 37.8% and cloprostenol = 36.7%). Fertility was improved in cows of both treatments having reduced concentrations of progesterone at 72 h and in cows showing signs of estrus. In Experiment 2, an ovulation-resynchronization program was initiated with GnRH or saline in 427 previously inseminated lactating dairy cows of unknown pregnancy status in one herd. Seven days later, pregnancy was diagnosed and nonpregnant cows were blocked by number of CL and assigned randomly to be treated with cloprostenol or dinoprost. Compared with cloprostenol, dinoprost increased (P < 0.05) luteal regression from 69.1 to 78.5%, regardless of the number of CL present or the total luteal volume per cow. Pregnancies per AI did not differ between dinoprost (32.8%) and cloprostenol (31.3%). Although dinoprost was more effective than cloprostenol at inducing luteolysis in lactating dairy cows exposed to an Ovsynch or ovulation-resynchronization protocol, resulting fertility did not differ between products.  相似文献   

16.
In previous studies, we demonstrated that the administration of a luteolytic dose of cloprostenol, followed by 750 IU hCG plus 3 mg estradiol benzoate (EB) 12 h later, synchronized estrus in cows in the luteal phase. Most cows were ready for service 48 h after the beginning of treatment. The objectives of this study were to evaluate the reproductive performance of lactating dairy cows treated with this method of estrus synchronization and to determine the effect of decreasing the hCG-EB dose on synchronization and pregnancy rates after timed AI. Data were obtained from cows first inseminated within an interval of 45 to 70 d postpartum. A total of 2,472 lactating dairy cows in their first to second lactation period were assigned to 4 groups. Cows estimated to be in the luteal phase by rectal palpation were treated with 500 mcg, im, of cloprostenol and assigned to 1 of 3 groups to be intramuscularly injected with hCG-EB 12 h later at the following doses: Group 1 (n=626), 250 IU of hCG and 1 mg of EB; Group 2 (n=592), 500 IU of hCG and 2 mg of EB; and Group 3 (n=664), 750 IU of hCG and 3 mg of EB. Cows displaying natural estrus were inseminated to serve as controls (n=590). The synchronized cows were inseminated 48 h after cloprostenol injection, and control animals visually determined to be in natural estrus during the morning or afternoon were inseminated the following morning. Pregnancy diagnosis was performed by rectal palpation at 34 to 40 d postinsemination. All synchronized cows showed estrous activity within 24 to 36 h after cloprostenol treatment and were considered to be ready for service 48 h after this treatment. There was a significant effect of treatment on the pregnancy rate, either to first AI or to 2 rounds of AI. The pregnancy rate in response to first or second rounds of AI was similar to control rates for cows in Groups 1 and 2, and lower than control rates in Group 3. Cows in Group 1 showed a higher pregnancy rate to first AI than those in Group 3 (P<0.0001), and a higher pregnancy rate to second AI rounds than cows in Groups 2 (P<0.02) and 3 (P<0.0001). The number of cows returning to estrus was unaffected by treatment. However, treatment significantly decreased (P<0.01) the time of return to estrus as the hCG-EB dose increased. These findings indicate that the lowest dose of hCG-EB treatment tested gave the overall best pregnancy results among the treated groups. Furthermore, the synchronization protocol used in this experiment allows effective AI management of lactating dairy cows without the need for estrus detection.  相似文献   

17.
Reduced capability of the uterus to support pregnancy in the absence of its interaction with secretions from male accessory glands has been demonstrated in rodents and to some extent in pigs. However, in cattle, the role of postmating inflammatory response on pregnancy success has not been studied. The current study examined the influence of uterine presensitization with seminal antigens at breeding on pregnancy outcome in cows. Lactating beef (n = 1090) and dairy (n = 800) cows received 0.5 mL seminal plasma (SP), 40 ng recombinant human transforming growth factor-β1 (rhTGF-β1), or 0.5 mL bovine serum albumin (BSA), or were left untreated before or at insemination. Semen was deposited into the anterior cervix using a second insemination gun. Pregnancy was diagnosed at 35 to 40 d postinsemination by transrectal ultrasonography or from records of calves born the subsequent calving season. Pregnancy rates in beef cows did not differ among treatments but differed among trials (69.8%, 52.5% vs. 40.3%; P < 0.05). In trials where average pregnancy rates were below 50%, treatments with TGF-β1 but not SP tended (P < 0.07) to increase pregnancy rates in beef cows. In dairy cows, SP and TGF-β1 improved pregnancy outcome by 10 percentage points, but these increments did not achieve statistical significance. In conclusion, this study did not find any conclusive evidence for the effect of TGF-β1 or seminal plasma on pregnancy outcome in lactating dairy or beef cows but realized marginal improvements when pregnancy rates were below 50% (compromised fertility).  相似文献   

18.
Ovsynch-type synchronization of ovulation protocols have suboptimal synchronization rates due to reduced ovulation to the first GnRH treatment and inadequate luteolysis to the prostaglandin F (PGF) treatment before timed artificial insemination (TAI). Our objective was to determine whether increasing the dose of the first GnRH or the PGF treatment during the Breeding-Ovsynch portion of Double-Ovsynch could improve the rates of ovulation and luteolysis and therefore increase pregnancies per artificial insemination (P/AI). In experiment 1, cows were randomly assigned to a two-by-two factorial design to receive either a low (L) or high (H) doses of GnRH (Gonadorelin; 100 vs. 200 μg) and a PGF analogue (cloprostenol; 500 vs. 750 μg) resulting in the following treatments: LL (n = 263), HL (n = 277), LH (n = 270), and HH (n = 274). Transrectal ultrasonography and serum progesterone (P4) were used to assess ovulation to GnRH1, GnRH2, and luteal regression after PGF during Breeding-Ovsynch in a subgroup of cows (n = 651 at each evaluation). Pregnancy status was assessed 29, 39, and 74 days after TAI. In experiment 2, cows were randomly assigned to LL (n = 220) or HH (n = 226) treatment as described for experiment 1. For experiment 1, ovulation to GnRH1 was greater (P = 0.01) for cows receiving H versus L GnRH (66.6% [217/326] vs. 57.5% [187/325]) treatment, but only for cows with elevated P4 at GnRH1. Cows that ovulated to GnRH1 had increased (P < 0.001) fertility compared with cows that did not ovulate (52.2% vs. 38.5%); however, no effect of higher dose of GnRH on fertility was detected. The greater PGF dose increased luteal regression primarily in multiparous cows (P = 0.03) and tended to increase fertility (P = 0.05) only at the pregnancy diagnosis 39 days after TAI. Overall, P/AI was 47.0% at 29 days and 39.7% at 74 days after TAI; P/AI did not differ (P = 0.10) among treatments at 74 days (LL, 34.6%; HL, 40.8%; LH, 42.2%; HH, 40.9%) and was greater (P < 0.001) for primiparous cows than for multiparous cows (46.1% vs. 33.8%). For experiment 2, P/AI did not differ (P = 0.21) between H versus L treatments (44.2% [100/226] vs. 40.5% [89/220]). Thus, despite an increase in ovulatory response to GnRH1 and luteal regression to PGF, there were only marginal effects of increasing dose of GnRH or PGF on fertility to TAI after Double-Ovsynch.  相似文献   

19.
Using two PGF treatments 14 days apart as a way to enhance estrus detection rate following the 2nd treatment is a reproductive management tool that continues to be used on large dairy farms. In one study, in cows with a functional CL and a dominant follicle, treatment with cloprostenol vs. dinoprost resulted in greater peripheral estradiol concentrations. The objective of the present study was to determine if cloprostenol could enhance pregnancy rates of cows in a large dairy herd using a PGF program for 1st artificial insemination (AI). Lactating dairy cows (n = 4549) were randomly assigned to receive two treatments of either 500 μg cloprostenol or 25 mg dinoprost 14 days apart, with the 2nd treatment on the 1st day of the voluntary waiting period (57 DIM). Cows detected in estrus within 5 days after the 2nd treatment were inseminated. There was no effect of treatment on day of estrus detection, with 78% of cows inseminated on Days 3 or 4 following treatment. Cloprostenol increased (P < 0.01) estrus detection rates in 1st parity cows compared to dinoprost, 42.4 vs. 34.0%. In cows inseminated on Days 3 or 4 after treatment, cloprostenol increased (P = 0.05) conception rates compared to dinoprost, 38.3 vs. 34.4%. When treatments and parities were combined, conception rates increased (P < 0.02) with interval after treatment (27.0, 36.4, and 44.5% for Days 1 or 2, Days 3 or 4, and Day 5, respectively). Cloprostenol increased (P = 0.02) overall pregnancy rate compared to dinoprost, 14.4 vs. 12.2%. In summary, cloprostenol increased fertility in 1st parity cows inseminated on Days 3 or 4 following treatment and subsequently enhanced pregnancy rates of 1st parity lactating dairy cows compared to dinoprost. Fertility appeared greater in cows expected to have had a young antral ovarian follicle at treatment.  相似文献   

20.
Gümen A  Seguin B 《Theriogenology》2003,60(2):341-348
The objectives of this study evaluating induction of ovulation in early postpartum dairy cows were to: compare two methods of GnRH (100 mcg) administration (i.m. route and s.c. implant), and determine if prostaglandin F(2alpha) (PGF) causes release of LH or ovulation similar to that reported for GnRH. In trial #1, serum LH peaked at 2h after i.m. administration of GnRH and was declining at 4h. The s.c. GnRH implant also caused an elevation in serum LH at 2 and 4h after treatment, with LH declining at 6h. Serum LH was unchanged in control cows. Experimental treatment caused ovulation in 4 of 14 GnRH i.m. treated cows, 4 of 12 GnRH implanted cows and 0 of 13 control cows. Parity had no effect on LH response but did affect resulting ovulation rate as multiparous cows were more likely to ovulate than were primiparous cows in response to either GnRH treatment. All cows that ovulated had a follicle larger than 12 mm at the time of treatment. In trial #2, serum LH increased as before after i.m. administration of GnRH, however, serum LH was unchanged in cows treated with PGF or saline. Gonadotropin releasing hormone caused more cows to ovulate than did PGF or saline treatments, and GnRH shortened the interval from treatment to the onset of CL function over the PGF treatment; 13.9+/-2.6, 28.2+/-4.1 and 22.3+/-4.1 days for GnRH, PGF and saline, respectively. In summary, there was no difference in the ability of s.c. implantation and i.m. administration of GnRH to cause ovulation. Prostaglandin F(2alpha) did not cause release of LH or ovulation. In 22 early postpartum dairy cows treated with 100 mcg GnRH i.m. in these two trials, nearly all cows (95%) responded with a release of LH but only 45% (10/22) responded with an ovulation and subsequent formation of a CL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号