首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
祁连山青海云杉林生物量和碳储量空间分布特征   总被引:7,自引:0,他引:7  
根据野外调查资料、祁连山地区青海云杉林相图和气象资料,在GIS技术的支持下估算了祁连山地区青海云杉林的生物量和碳储量及其空间分布.结果表明:2008年,研究区青海云杉林平均生物量为209.24 t·hm-2,总生物量为3.4×107 t;研究区水热条件的差异使青海云杉生物量在地理空间上存在较大的差异性;经度每增加1°,青海云杉生物量增加3.12t·hm-2;纬度每增加1°,生物量减少3.8 t·hm-2;海拔每升高100 m,生物量减少0.05 t·hm-2;2008年,研究区青海云杉林碳密度在70.4~131.1 t·hm-2,平均碳密度为109.8 t·hm-2,幼龄林、中龄林、近熟林、成熟林和过熟林的平均碳密度分别为83.8、109.6、122、124.2和117.1 t·hm-2,研究区青海云杉林总碳储量为1.8×107 t.  相似文献   

2.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度.结果表明: 西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2.不同林分乔木层碳储量依次为:乔木林>散生木>疏林>四旁树.不同林种乔木层碳储量大小依次为:防护林>特殊用途林>用材林>薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2.不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林>过熟林>近熟林>中龄林>幼龄林.其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势.  相似文献   

3.
利用林芝地区第六次二类森林资源清查数据,运用材积源生物量法和平均生物量法,结合不同树种的分子式含碳率,估算了林芝地区森林及其组分的碳储量、碳密度,并分析其分布特征.结果表明:2004年,林芝地区森林碳储量为2.43×1O8 t,森林平均碳密度为76.01 t·hm-2,其中,林分碳储量>灌木林碳储量>疏林碳储量>散生木碳储量>竹林碳储量>四旁树碳储量,各林分类型碳储量在2.51×105~1.27×108 t,共计占总森林碳储量的92.0%,各林分类型的平均碳密度为103.16 t·hm-2,其中冷杉林的碳储量和碳密度均最高.在区域分布上,森林碳储量由西北向东南递增,森林平均碳密度由西南向东北递增.林分碳储量以成、过熟林碳储量为主,而过熟林的碳密度在各龄级中最高.随着过熟林的增加,林芝地区森林碳储量将增加;但随着过熟林的死亡和分解,林芝地区森林碳储量将有减小趋势.  相似文献   

4.
深圳市森林植被碳储量特征及其空间分布   总被引:1,自引:0,他引:1  
基于2005年深圳市森林资源二类调查资料数据,采用材积源生物量法,计测深圳市森林植被碳储量和碳密度,分析了深圳市森林植被碳储量空间分布格局.结果表明,2005年深圳市森林植被总碳储量为225.04×104Mg,平均碳密度为25.63MgC·hm-2.深圳市各区的森林植被碳储量空间分布上有显著差异.表现为龙岗区(123.13×104Mg)>宝安区(46.70×104Mg)>盐田区(20.49×104Mg)>罗湖区(14.75×104Mg)>南山区(12.79×104Mg)>福田区(5.63×104Mg)>保护区(1.57×104Mg).各区碳密度分布为盐田区(46.18MgC·hm-2)>福田区(37.63 MgC·hm-2)>罗湖区(36.78MgC·hm-2)>龙岗区(26.60MgC·hm-2)>保护区>(24.19 MgC·hm-2)>宝安区(19.53MgC·hm-2),与碳储量大小分布无明显相关.深圳市乔木林碳储量为146.11×104Mg,以中幼龄林为主,占73.2%,平均碳密度为30.76MgC·hm-2.根据森林植被碳储量与碳密度的空间差异性对深圳市森林进行了区划,并分区提出了提高深圳市森林碳吸存能力的有效措施.  相似文献   

5.
宁夏回族自治区森林生态系统固碳现状   总被引:6,自引:2,他引:4  
根据宁夏回族自治区森林资源清查资料以及野外调查和室内分析的结果,研究了宁夏地区森林生态系统固碳现状,估算了该区森林生态系统的碳密度、碳储量,并分析了其空间分布特征.结果表明: 宁夏森林各植被层生物量大小顺序为: 乔木层(46.64 Mg·hm-2)>凋落物层(7.34 Mg·hm-2)>细根层(6.67 Mg·hm-2)>灌草层(0.73 Mg·hm-2).云杉类(115.43 Mg·hm-2)和油松(94.55 Mg·hm-2)的单位面积植被生物量高于其他树种.不同林龄乔木层碳密度中,过熟林最高,但由于幼龄林面积所占比例最大,其乔木层碳储量(1.90 Tg C)最大.宁夏地区森林生态系统平均碳密度为265.74 Mg C·hm-2,碳储量为43.54 Tg C,其中,植被层平均碳密度为27.24 Mg C·hm-2、碳储量为4.46 Tg C,土壤层碳储量是植被层的8.76倍.宁夏地区的森林碳储量整体呈南高北低分布,总量较低.这与其森林面积小和林龄结构低龄化有很大关系.随着林龄结构的改善和林业生态工程的进一步实施,宁夏森林生态系统将发挥巨大的固碳潜力.  相似文献   

6.
大兴安岭火烧迹地不同恢复方式碳储量差异   总被引:1,自引:0,他引:1  
辛颖  邹梦玲  赵雨森 《生态学杂志》2015,26(11):3443-3450
为了探讨不同恢复方式对大兴安岭重度火烧迹地碳储量的影响,以人工恢复(兴安落叶松、樟子松)和天然恢复的林分为研究对象,采用干烧法对乔木层、灌木层、草本层和枯枝落叶层含碳率进行测定.采用全收获法和平均标准木法获得林分各组分生物量估算森林植被的碳储量,分析不同恢复方式下林分各组分碳储量的分配特征.结果表明: 人工恢复和天然恢复的林分灌木层平均含碳率高于乔木层和草本层.兴安落叶松人工林灌木层平均含碳率为45.8%、枯枝落叶层为45.3%、乔木层为44.4%、草本层为33.6%.樟子松人工林灌木层和乔木层平均含碳率高于50%.天然次生林乔木层、灌木层和枯枝落叶层平均含碳率在42%左右.森林植被层中,生物量贡献率从大到小依次为乔木层、灌木层和草本层.兴安落叶松人工林森林植被层和枯枝落叶层生物量总和为123.90 t·hm-2,远高于樟子松人工林和天然次生林.火烧后人工恢复23年的兴安落叶松人工林森林植被碳储量为50.97 t·hm-2,其中,乔木层碳储量为49.87 t·hm-2,占森林植被层总碳储量的97.8%,草本层所占比重仅为0.02%.人工恢复的林分植被层总碳储量高于天然恢复的林分,火烧迹地在这一时段内采用人工恢复的方式较天然恢复碳汇能力更强.  相似文献   

7.
基于森林资源清查资料分析山东省森林立木碳储量   总被引:2,自引:0,他引:2  
利用山东省第7次森林资源清查数据,采用生物量-蓄积量转换函数和平均生物量法,结合不同树种的含碳率,研究山东省森林生态系统立木碳储量、碳密度及其按优势树种、龄组和林种的分布特征.结果表明: 2007年山东省森林立木碳储量为25.27 Tg,其中,针叶林、针阔混交林和阔叶林的立木碳储量分别占全省立木碳储量的8.6%、2.0%和89.4%.不同林龄组的立木碳储量大小顺序为幼龄林>中龄林>成熟林>近熟林>过熟林,其中幼龄林和中龄林占全省立木总碳储量的69.3%.用材林、经济林和防护林的立木碳储量分别占全省立木碳储量的37.1%、36.3%和24.8%.山东省森林平均立木碳密度为10.59 t·hm-2,低于全国平均水平,主要是由于现有森林用材林和经济林比重高,中幼林多、成过熟林少.
  相似文献   

8.
基于1990~2010年黑龙江省大兴安岭地区4期森林资源连续清查的602块固定样地数据,分析了大兴安岭地区天然落叶松林年均枯损木碳释放量、进界木碳储量、碳净增量的动态变化以及随立地质量、林分密度的变化规律。结果表明:该地区各龄组碳释放量在0.133 7~0.484 1 t·hm-2·a,碳释放量随着龄组的增大而增大;进界木碳储量在幼龄林时较大,为0.128 2 t·hm-2·a,近熟林最小,为0.040 0 t·hm-2·a,其他龄组差异不大;碳净增量随着龄组的增大而减小,幼龄林、中龄林、近、成、过熟林分别为1.374 9、0.982 1、0.649 9、0.538 1、0.240 7 t·hm-2·a;相同立地质量条件下,各龄组碳释放量与林分密度成正比。幼龄林、中龄林、成熟林随林分密度的增大进界木碳储量减小,近熟林和过熟林规律不明显。除幼龄林之外,各龄组在林分密度为中时,林分碳净增量最大;相同林分密度条件下,各龄组(近熟林、成熟林无明显规律)碳释放量与立地质量成负相关关系。各龄组(过熟林除外)立地质量越好,进界木碳储量越小;相同林分密度条件下,立地质量越好,碳净增量越大。  相似文献   

9.
晋西北黄土高原丘陵区不同土地利用方式下土壤碳氮储量   总被引:14,自引:1,他引:13  
对晋西北黄土高原丘陵区杨树-小叶锦鸡儿人工林、小叶锦鸡儿人工灌丛、杨树人工林、撂荒地和农田5种土地利用方式下土壤碳氮储量进行研究.结果表明: 不同土地利用方式下土壤碳氮含量、碳氮密度和碳氮储量存在显著差异.5种土地利用方式0~20 cm表层土壤碳氮含量和碳氮密度均显著大于20~40 cm和40~60 cm土层.5种土地利用方式同一土层碳氮含量和碳氮密度大小为: 杨树-小叶锦鸡儿人工林>小叶锦鸡儿人工灌丛>杨树人工林>撂荒地>农田;0~60 cm土层土壤有机碳储量大小为:杨树-小-叶锦鸡儿人工林(30.09 t·hm-2)>小叶锦鸡儿人工灌丛(24.78 t·hm-2)>杨树人工林(24.14 t·hm-2)>撂荒地(22.06 t·hm-2)>农田(17.59 t·hm-2);土壤氮储量与有机碳储量变化规律相似,杨树-小叶锦鸡儿人工林0~60 cm土层土壤氮储量(4.94 t·hm-2)最高,其次是小叶锦鸡儿人工灌丛(3.53 t·hm-2)、杨树人工林(3.51 t·hm-2)和撂荒地(3.40 t·hm-2),农田土壤氮储量(2.71 t·hm-2)最低.杨树-小叶锦鸡儿人工林和小叶锦鸡儿人工灌丛是晋西北黄土高原丘陵区植被建设和生态恢复过程中较好的两种土地利用方式.  相似文献   

10.
吉林省森林植被固碳现状与速率   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对吉林省森林植被的普遍调查、典型调查以及植被样品含碳率测定, 结合吉林省2009年和2014年森林清查数据, 估算了区域森林植被的碳储量、碳密度及固碳速率。研究结果表明: 林下植被的生物量在不同林分和同类林分中存在较大的差异, 整体不足乔木层生物量的3%, 灌木植物的生物量略高于草本植物和幼树。不同林分类型的乔木含碳率介于45.80%-52.97%之间, 整体表现为针叶林高于阔叶林; 灌木和草本植物分别为39.79%-47.25%和40%左右。吉林省森林植被碳转换系数以0.47或0.48更为准确, 若以0.50或0.45作为植被的碳转换系数计算碳储量, 会造成±5.26%的偏差。吉林省森林植被不仅维持着较高的碳库水平, 而且极具碳汇能力; 2009年和2014年碳储量分别为471.29 Tg C和505.76 Tg C, 累计碳增量34.47 Tg C, 平均每年碳增量6.89 Tg C·a-1; 碳密度由64.58 t·hm-2增至66.68 t·hm-2, 平均增加2.10 t·hm-2, 固碳速率0.92 t·hm-2·a-1。森林植被碳储量的增长主体是蒙古栎(Quercus mongolica)林和阔叶混交林, 合计碳增量占总体的90.34%。受植被发育引起的生物量增长、林分龄组晋级以及森林经营所引起的面积变化影响, 各龄组植被碳增量为幼龄林>过熟林>近熟林>中龄林, 成熟林表现为负增长; 固碳速率为过熟林>幼龄林>近熟林>中龄林>成熟林。森林植被碳储量和碳密度的市/区分布整体表现为自东向西明显的降低变化; 碳增量以东北和中东部地区较高, 西部地区较低; 固碳速率整体以南部的通化地区和白山地区相对较高, 中部的吉林地区和东部的延边地区次之, 西部的白城地区、松原地区等地呈负增长。  相似文献   

11.
红树林湿地碳储量及碳汇研究进展   总被引:9,自引:0,他引:9  
红树林是生长在热带和亚热带地区潮间带的特殊的湿地森林,在防风固田、促进淤泥沉积、抵御海啸和台风等自然灾害和保护海岸线方面起着重要的作用.全球约有红树林152000 km2,占陆地森林面积的0.4%,我国约有230 km2.热带红树林湿地的碳储量平均高达1023 Mg C·hm-2,全球红树林湿地的碳汇能力在0.18~0.228 Pg C·a-1.影响红树林碳储量和碳汇能力的主要因子除了植物种类组成以外,气温、海水温度、海水盐度、土壤理化性质、大气CO2浓度及人类干扰等均有着重要作用.红树林湿地碳储量、碳汇能力的研究方法以实测法为基础,包括异速方程、遥感反演和模型模拟等.研究红树林湿地碳储量及碳汇能力,有利于深入认识红树林湿地碳循环过程及其调控机制,对红树林湿地的保护和合理利用具有重要意义.  相似文献   

12.
内蒙古森林以其面积大、活立木总蓄积高成为全国森林的重要组成部分.本文以文献为基础,分析了近年来内蒙古森林及其组成部分的碳储量、碳密度、固碳速率和潜力.大部分研究以第六次森林清查数据为基础,利用材积与生物量之间的线性关系,得出内蒙古森林碳储量约为920 Tg C,占同期国家森林资源总碳储量的12%,年均增长率约为1.5%,平均碳密度约为43 t·hm-2.森林碳储量和碳密度呈逐年增加趋势,其中,针阔叶混交林、樟子松林和白桦林固碳能力最高.间伐和皆伐等人类活动使森林碳储量明显降低.已有的碳汇特征研究很少涉及土壤部分,仅有少数研究指出土壤碳密度随林龄的增加而增加.关于森林生态系统固碳潜力的研究不够深入.建议今后在计算内蒙古森林生态系统碳储量时,加入土壤碳储量部分;利用异速生长方程计算碳储量时,将树种器官碳含量设为45%;建立更多优势树种的、包含根系生物量的异速生长方程;加强气候变化与生态系统固碳速率和潜力关系的研究.  相似文献   

13.
以贵州省盘县3种林龄(19、28和45年生)云南松林为对象,研究了林地土壤有机碳和全氮含量的垂直分布、积累特征及其与土壤容重的关系.结果表明: 不同林龄云南松林土壤剖面的有机碳和全氮含量变化规律一致,表层呈富集现象,随着土层的加深而逐渐减少.随着林龄的增加,林地土壤的有机碳和全氮储量增加,19、28和45年生林地土壤有机碳储量分别为96.24、121.65和148.13 t·hm-2,全氮储量分别为10.76、12.96和13.08 t·hm-2.土壤有机碳与全氮含量呈极显著正相关,二者均与土壤容重呈极显著负相关.不同生长阶段林地土壤有机碳和全氮的积累速率有所差异,其中19~28年生林地的土壤有机碳和全氮含量积累速率高于28~45年生林地.
  相似文献   

14.
研究秦岭南坡东段8、25、35、42和61年生油松人工林碳、氮储量和分配格局.结果表明: 油松人工林不同林龄乔木层碳、氮含量为441.40~526.21和3.13~3.99 g·kg-1,灌木层为426.06~447.25和10.62~12.45 g·kg-1,草本层为301.37~401.52和10.35~13.33 g·kg-1,枯落物层为382.83~424.71和8.69~11.90 g·kg-1,土壤层(0~100 cm)为1.51~18.17和0.29~1.45 g·kg-1.树干和树枝分别是乔木层的主要碳库和氮库,占乔木层碳储量的48.5%~62.7%和氮储量的39.2%~48.4%.林龄对生态系统碳、氮储量均有显著影响.生态系统碳储量随林龄增加而增加,35年时达最大值146.06 t·hm-2,成熟后碳储量有所下降.5个林龄段油松林生态系统氮储量的最大值为25年时的10.99 t·hm-2.植被层平均碳、氮储量分别为45.33 t·hm-2和568.55 kg·hm-2,土壤层平均碳、氮储量分别为73.12和8.57 t·hm-2,且土壤层中碳、氮的积累具有明显的表层富集现象.研究区油松人工林生态系统碳、氮储量主要分布在土壤层,其次为乔木层.生态系统碳储量空间分配格局为:土壤层(64.1%)>乔木层(30.0%)>灌草层和枯落物层(5.9%),氮储量为土壤层(93.2%)>乔木层(5.3%)>灌草层和枯落物层(1.5%).  相似文献   

15.
尕海湿地生态系统土壤有机碳储量和碳密度分布   总被引:5,自引:4,他引:1  
2011年7月,研究了甘南尕海典型湿地(草本泥炭地、沼泽湿地、高山湿地和亚高山草甸)土壤剖面有机碳分布及其储量.结果表明: 4种典型湿地土壤容重平均在0.22~1.29 g·cm-3;草本泥炭地土壤有机碳含量明显高于其他类型,其平均值(286.80 g·kg-1)约为沼泽湿地、高山湿地和亚高山草甸的2.91、4.99和7.13倍.各类湿地土壤平均有机碳密度为草本泥炭地>亚高山草甸>沼泽湿地>高山湿地,以0~10 cm剖面的密度最大;各类湿地土壤剖面的有机碳密度与有机碳含量的变化趋势基本一致,均随土壤深度的增加呈现波动性变化;草本泥炭地、沼泽湿地、高山湿地和亚高山草甸的土壤有机碳均存在0~10和20~40 cm两个明显储碳层;其0~60 cm深度的土壤有机碳储量分别为369.46、278.83、276.16和292.23 t·hm-2.尕海湿地4种类型湿地0~60 cm土壤的总有机碳储量约为9.50×106 t.  相似文献   

16.
城市森林是增加城市碳吸收的积极因素之一,为全球碳循环作出了重要贡献.本文基于Quickbird高分辨率遥感影像,以浙江省义乌市环城路以内区域为研究区,将市区的森林分为公园森林、防护森林、单位附属森林和其他森林4种类型.以实地样地调查碳储量为因变量,利用逐步线性回归的分析方法从遥感影像中的波段灰度值、植被指数、纹理信息等50个因子中选取自变量因子,最终建立不同森林类型的遥感碳储量估算模型.结果表明: 研究区4种森林类型的模型精度都在70%左右.公园森林、防护森林、单位附属森林和其他森林的碳储量分别为3623.80、5245.78、5284.84、5343.65 t.该区域碳密度主要集中在25~35 t·hm-2.在今后的城市森林规划中,可通过提高绿化率以及乔木与低矮灌木的套种来进一步加强城市森林碳吸收的功能.
  相似文献   

17.
亚热带天然阔叶林转换为杉木人工林对土壤呼吸的影响   总被引:1,自引:0,他引:1  
采用静态箱-气相色谱法对浙江省临安市玲珑山风景区天然阔叶林和由天然阔叶林改造的杉木人工林的土壤呼吸进行1年的定位监测.结果表明:天然阔叶林和杉木人工林土壤CO2排放速率均呈现一致的季节性变化规律即夏秋季高、冬春季低;天然阔叶林和杉木人工林土壤CO2排放速率分别为20.0~111.3和4.1~118.6 mg C·m-2·h-1;天然阔叶林土壤CO2年累积排放通量(16.46 t CO2·hm-2·a-1)显著高于杉木人工林(11.99 t CO2·hm-2·a-1).天然阔叶林和杉木人工林土壤CO2排放速率与土壤含水量均没有显著相关性,而与5 cm处土壤温度呈显著指数相关,Q10值分别为1.44和2.97;天然阔叶林土壤CO2排放速率与土壤水溶性碳(WSOC)含量无显著相关性,杉木人工林土壤CO2排放速率与WSOC含量呈显著相关.天然阔叶林转换为杉木人工林显著降低了土壤CO2排放,提高了土壤呼吸对环境因子的敏感性.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号