首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Gamma-irradiation of mongrel mice at a sublethal dose (700 Roentgen) enhanced the formation of nitric oxide (NO) in the liver, intestine, lung, kidney, brain, spleen or heart of the animals. NO formation was determined by the increase in intensity of the EPR signal due to trapping of NO into mononitrosyl iron complexes (MNIC) with exogenous diethyldithiocarbamate (DETC) injected intraperitoneally. The EPR signal of these MNIC-DETC complexes was characterized by g-factor values at g perpendicular values at g perpendicular = 2.035 and g parallel = 2.02 and a triplet hyperfine structure at g perpendicular. The NO synthase inhibitor, NG-nitro-L-arginine, prevented MNIC-DETC complex formation both in liver and intestine, demonstrating the involvement of endogenous NO formed. Thus, gamma-irradiation may enhance endogenous NO biosynthesis in these tissues, presumably by facilitating the entry of Ca2+ ions into the membrane as well as the cytosol of NO-producing cells through irradiation-induced membrane lesions.  相似文献   

2.
Administration of Fe(2+)-citrate complex (50 mg/kg of FeSO4 or FeCl2 plus 250 mg/kg of sodium citrate) subcutaneously in the thigh or Escherichia coli lipopolysaccharide (LPS, 1 mg/kg) intraperitoneally, (i.p.) to mice induced NO formation in the livers in vivo at the rate of 0.2-0.3 micrograms/g wet tissue per 0.5 h. The NO synthesized was specifically trapped with Fe(2+)-diethyldithiocarbamate complex (FeDETC2), formed from endogenous iron and diethyldithiocarbamate (DETC) administered i.p. 0.5 h before decapitation of the animals. NO bound with this trap resulted in the formation of a paramagnetic mononitrosyl iron complex with DETC (NO-FeDETC2), characterized by an EPR signal at g perpendicular = 2.035, g parallel = 2.02 with triplet hyperfine structure (HFS) at g perpendicular. This allowed quantification of the amount of NO formed in the livers. An inhibitor of enzymatic NO synthesis from L-arginine, NG-nitro-L-arginine (NNLA, 50 mg/kg) attenuated the NO synthesis in vivo. L-Arginine (500 mg/kg) reversed this effect. Injection of L-[guanidineimino-15N2]arginine combined with Fe(2+)-citrate or LPS led to the formation of the EPR signal of NO-FeDETC2 characterized by a doublet HFS at g perpendicular, demonstrating that the NO originates from the guanidino nitrogens of L-arginine in vivo.  相似文献   

3.
The mechanism of NO trapping by iron-diethylthiocarbamate complexes was investigated in cultured cells and animal and plant tissues. Contrary to common belief, the NO radicals are trapped by iron-diethylthiocarbamates not only in ferrous but in ferric state also in the biosystems. When DETC was excess over endogenous iron ligands like citrate, ferric DETC complexes were directly observed with EPR spectroscopy at g=4.3. This was the case when isolated spinach leaves, endothelial cultured cells were incubated in the medium with 2.5mM DETC or mouse liver was perfused with 100mM DETC solution. After trapping NO, the nitrosylated Fe-DETC adducts are mostly in diamagnetic ferric state, with only a minor fraction having been reduced to paramagnetic ferrous state by endogenous biological reductants. In actual in vivo trapping experiments with mice, the condition of excess DETC was not met. The substantial quantities of iron in animal tissues were bound to ligands other than DETC, in particular citrate. These non-DETC complexes appear as roughly equal mixtures of ferric and ferrous iron. The presence of NO favors the replacement of non-DETC ligands by DETC. In all biological systems considered here, the nitrosylated Fe-DETC adducts appear as mixture of diamagnetic and paramagnetic states. The diamagnetic ferric nitrosyl complexes may be reduced ex vivo to paramagnetic form by exogenous reductants like dithionite. The trapping yields are significantly enhanced upon exogenous reduction, as proven by NO trapping experiments in plants, cell cultures and mice.  相似文献   

4.
EPR evidence was obtained that more intensive formation of mononitrosyl non-heme iron complexes with diethyl-dithiocarbamate (DETC) took place in mouse liver when inflammation process was initiated in mice by the lipopolysaccharide isolated from Salmonella typhimurium bacterium wall DETC intraperitoneally injected bound with endogenous non-heme iron resulted with DETC-Fe complex formation. These complexes were as a traps of nitric oxide appeared in animal tissues, and NO-Fe-DETC complexes were observed. Phenazone known as a free radical process inhibitor lowered NO production in animal organism. The free radical processes were suggested to intensify under inflammation reactions and to cause the various amino groups oxidation to nitroso groups which were capable to release free nitric oxide.  相似文献   

5.
A decrease of the formation in the mouse liver of nitrogen oxide incorporated into ferrum mononitrozyl complexes (FMNC) with diethyldithiocarbamate (DETC) recorded by ESR method was discovered. This decrease was induced by one of the alkaloids isolated from Ammopiptantus mongolica which grows in the Gobi desert. This effect seems to be due to the antioxidant properties of the alkaloid under study. Alkaloid lessened the formation of FMNC with DETC both in the control animals and in those treated with lipopolysaccharide from E. coli initiating inflammation processes and intensification of NO synthesis. Proceeding from the data obtained it is suggested that free radicals reacting with the antioxidant affect NO formation by increasing the level of free calcium in the cell.  相似文献   

6.
NO-dependent mechanisms of adaptation to hypoxia.   总被引:3,自引:0,他引:3  
In studying NO-dependent mechanisms of resistance to hypoxia, it was shown that (1) acute hypoxia induces NO overproduction in brain and leaves unaffected NO production in liver of rats; (2) adaptation to hypoxia decreases NO production in liver and brain; and (3) adaptation to hypoxia prevents NO overproduction in brain and potentiates NO synthesis in liver in acute hypoxia. Dinitrosyl iron complex (DNIC, 200 microg/kg, single dose, iv), a NO donor, decreases the resistance of animals to acute hypoxia by 30%. Nomega-nitro-L-arginine (L-NNA, 50 mg/kg, single dose, ip), a NO synthase inhibitor, and diethyl dithiocarbamate (DETC, 200 mg/kg, single dose, iv), a NO trap, increases this parameter 1.3 and 2 times, respectively. Adaptation to hypoxia developed against a background of accumulation of heat shock protein HSP70 in liver and brain. A course of DNIC reproduced the antihypoxic effect of adaptation. A course of L-NNA during adaptation hampered both accumulation of HSP70 and development of the antihypoxic effect. Therefore, NO and the NO-dependent activation of HSP70 synthesis play important roles in adaptation to hypoxia.  相似文献   

7.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

8.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

9.
Ferrous-diethyldithiocarbamate (Fe(DETC)(2)) chelate is a lipophilic spin trap developed for (.)NO detection by electron paramagnetic resonance (EPR) spectroscopy. Using this spin trap we investigated the kinetics of (.)NO production in endotoxaemia in rats induced by lipopolysaccharide (Escherichia coli, 10 mg/kg). The NO-Fe(DETC)(2) complex was found to give a characteristic EPR signal, and the amplitude of the 3rd (high-field) component of its hyperfine splitting was used to monitor the level of (.)NO. We found that in blood, kidney, liver, heart and lung (.)NO production starts to increase as early as 2 h after LPS injection, reaches the maximum 6 h after LPS injection and then returns to basal level within further 12-18 h. Interestingly, in the eye bulb the maximum of (.)NO production was detected 12 h after LPS, and the signal was still pronounced 24 h after LPS. In brief, the highly lipophilic exogenous spin trap, Fe(DETC)(2) is well suited for assessment of (.)NO production in endotoxaemia. We demonstrated that the kinetics of increased production of (.)NO in endotoxaemic organs, with the notable exception of the eye, do not follow the known pattern of NOS-2 induction under those conditions. Accordingly, only in early endotoxaemia a high level of (.)NO is detected, while in late endotoxaemia (.)NO detectability is diminished most probably due to concomitant oxidant stress.  相似文献   

10.
The report describes a method for tracing nitric oxide (NO) distribution in endotoxin-treated mice using in vivo low-frequency L-band (1.1 GHz) electron spin resonance spectroscopy (ESR) in combination with extracellular nitric oxide trapping complex consisting of N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). An ESR signal characteristic of the MGD-Fe-NO complex was found in the upper abdomen (liver region), lower abdomen and head region of ICR mice. The origin of NO from the L-arginine-NO synthase (NOS) pathway was confirmed using the NOS inhibitor N(G)-monomethyl-L-arginine (NMMA) and isotopic tracing experiments with 15N-labelled L-arginine. Experiments with mice lacking inducible NOS (iNOS) and matched wild type animals were performed using the NO trapping agent diethyldithiocarbamate (DETC). These experiments demonstrated that endotoxin-induced NO generation in the liver tissue of mice occurs via the iNOS isoform of NOS. The described in vivo ESR technique using a "whole body" resonator allows in vivo on-line detection of endogenous NO in mice.  相似文献   

11.
The nitrogen monoxide radical (NO*) forms paramagnetic mono- and dinitrosyl-iron complexes in biologic tissues. To establish a noninvasive technique for in vivo NO* imaging, we evaluated the suitability of these complexes as magnetic resonance (MR) contrast agents, making use of the ability of the unpaired electrons of the complexes to enter into dynamic nuclear polarization with water protons and hence produce enhancement on images generated by the technique of proton-electron-double-resonance imaging (PEDRI). Phantom solutions of synthetic nitrosyl-iron complexes (NICs) altered the signal intensity of PEDRI images. The dinitrosyl-iron complex (DNIC) with serum albumin induced a significantly larger signal alteration than the mononitrosyl-iron complex (MNIC) with dithiocarbamate. Exposure of rat liver to sodium nitroprusside (SNP) by ex vivo and in situ perfusion induced a composite X-band electron spin resonance (ESR) spectrum of the isolated liver characteristic of a MNIC and DNIC. On storage of the tissue, the MNIC signal disappeared and the DNIC signal intensity increased. Correspondingly, in cross-sectional PEDRI images taken at room temperature, the SNP-exposed livers initially exhibited a weak signal that strongly increased with time. In conclusion, NICs can be detected using PEDRI and could be exploited for in vivo NO* imaging.  相似文献   

12.
Matsuda H  Li Y  Yoshikawa M 《Life sciences》2000,66(3):PL 41-PL 46
We reported previously that escins Ia, Ib, IIa, and IIb, isolated from horse chestnuts, inhibited the 30-min gastric emptying (GE) in mice. In this study, the effects of escins Ia-IIb on gastrointestinal transit (GIT), and the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the effects of escins Ia--IIb on GE and GIT were investigated in fasted mice. Escins Ia-IIb (12.5-50 mg/kg, p.o.) dose-dependently accelerated GIT. Both GE inhibitions and GIT accelerations by escins Ia-IIb (25 mg/kg) were markedly attenuated by pretreatment with indomethacin (10 mg/kg, s.c., an inhibitor of PGs synthesis). Pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p., an inhibitor of constitutive and inducible NO synthase) attenuated the effects of escins Ia-IIb on GIT, but not on GE. The effect of L-NAME was reversed by L-arginine (600 mg/kg, i.p., a substrate of NO synthase), but not by D-arginine (900 mg/kg, i.p., the enantiomer of L-arginine). The GIT accelerations of escins Ia-IIb were not attenuated by pretreatment with D-NAME (10 mg/kg, i.p., the enantiomer of L-NAME) or dexamethasone (5 mg/kg, i.p., an inhibitor of inducible form of NO synthase). The results suggest that endogenous PGs play an important role in both GE inhibitions and GIT accelerations, and constitutive NO is involved in the GIT accelerations, by escins Ia--IIb in mice.  相似文献   

13.
《Journal of Physiology》1997,91(3-5):139-149
We describe the effects of nitric oxide (NO) agonists and antagonists and the influence of a novel organoprotective pentadecapeptide BPC 157, on the development of pulmonary hypertension syndrome and tissue lesions in chicks. Acute toxicity, which includes single dose application of saline (1 mL intraperitoneally (ip)), BPC 157 (10 μg/kg bw), L-NAME (NO antagonist, doses 50, 100, 150 mg/kg bw) and L-arginine (NO agonist/100 mg/kg bw with their combination L-NAME + BPC 157; L-NAME + L-arginine) was investigated. In this experiment pathohistological examination of the spleen, heart, liver and lungs and hematological analysis was conducted. In the chronic toxicity experiment, the animals were treated daily for 5 weeks with L-NAME (10 mg/kg bw), L-arginine (100 mg/kg bw), BPC 157 (10 μg/kg bw) and their combinations (L-NAME + BPC 157; L-NAME + L-arginine) ip. Seven animals from each group, including controls (saline 1 mL ip) were killed every week. Application of L-NAME caused pulmonary hypertension syndrome (PHS) in the treated chicks, which was prevented by the simultaneous application of L-arginine and BPC 157. Pathohistological examination of both acute and chronic toxicity revealed that L-NAME caused severe tissue damage (myocardial and hepatic cell necrosis, necrosis of the lymphoid cells in the spleen) while L-arginine provoked predominantly congestion, edema and hemorrhages in all organs. The effect of L-NAME was successfully inhibited by the application of L-arginine and BPC 157 but the latter substance did not cause any tissue or organ damage. Hematological analysis shows significant hemoglobin and leukocyte number decrease in the L-NAME-treated groups of chicks.  相似文献   

14.
We previously reported the stimulatory effect of endogenous nitric oxide (NO) on gastric acid secretion in the isolated mouse whole stomach and histamine release from gastric histamine-containing cells. In the present study, we investigated the effects of endogenous and exogenous NO on gastric acid secretion in urethane-anesthetized rats. Acid secretion was studied in gastric-cannulated rats stimulated with several secretagogues under urethane anesthesia. The acid secretory response to the muscarinic receptor agonist bethanechol (2 mg/kg, s.c.), the cholecystokinin(2) receptor agonist pentagastrin (20 microg/kg, s.c.) or the centrally acting secretagogue 2-deoxy-D-glucose (200 mg/kg, i.v.) was dose-dependently inhibited by the NO synthase inhibitor N(omega)-nitro-L-arginine (L-NNA, 10 or 50 mg/kg, i.v.). This inhibitory effect of L-NNA was reversed by a substrate of NO synthase, L-arginine (200 mg/kg, i.v.), but not by D-arginine. The histamine H(2) receptor antagonist famotidine (1 mg/kg, i.v.) completely inhibited the acid secretory response to bethanechol, pentagastrin or 2-deoxy-D-glucose, showing that all of these secretagogues induced gastric acid secretion mainly through histamine release from gastric enterochromaffin-like cells (ECL cells). On the other hand, histamine (10 mg/kg, s.c.)-induced gastric acid secretion was not inhibited by pretreatment with L-NNA. The NO donor sodium nitroprusside (0.3-3 mg/kg, i.v.) also dose-dependently induced an increase in acid secretion. The sodium nitroprusside-induced gastric acid secretion was significantly inhibited by famotidine or by the soluble guanylate cyclase inhibitor methylene blue (50 mg/kg, i.v.). These results suggest that NO is involved in the gastric acid secretion mediated by histamine release from gastric ECL cells.  相似文献   

15.
This paper discusses in vivo detection of nitric oxide (NO) distribution in endotoxin-treated mice using L-band (1.1 GHz) electron paramagnetic resonance spectroscopy (EPR) in combination with the hydrophilic NO trapping complex: N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). MGD-Fe-NO complex is found in the upper abdomen (liver region), lower abdomen (kidney and urinary bladder) and head region of ICR mice. Experiments with nitric oxide synthase (NOS) inhibition and 15N-labeled L-arginine as NOS substrate verify the origin of trapped NO from L-arginine. However, contribution from a 'nonenzymatic' NO generation pathway can not be ruled out. This paper further examines potential artifacts, which may arise in experiments using dithiocarbamate-iron complexes as NO trapping agents.  相似文献   

16.
Augmentation of the NO-cGMP cascade induces anxiogenic-like effect in mice.   总被引:2,自引:0,他引:2  
Several studies have reported the anxiolytic-like effects of various nitric oxide synthase inhibitors in distinct animal models. However, in the context of anxiety, the possible involvement of cyclic GMP, believed to be one of the main targets of NO, remains obscure. Cyclic GMP is degraded by the specific phosphodiesterases in the brain. Therefore, we studied the effect of the selective phosphodiesterase type 5 inhibitor sildenafil in the mouse elevated plus-maze test of anxiety and in the open field test of locomotion. We found that sildenafil (0.05-10 mg/kg i.p.) alone did not affect the behavior of animals in the plus-maze or open field tests, but the anxiogenic beta-carboline DMCM given in a subconvulsive dose (2 mg/kg i.p.) decreased the time spent on open arms in the elevated plus-maze. Treatment with the NO precursor L-arginine (200 mg/kg i.p.) did not modify the behavior of animals in the plus-maze, however, when sildenafil (1 mg/kg i.p.) was administered in combination with L-arginine (200 mg/kg i.p.), both the time spent on the open arms and the percentage of open arm visits were significantly decreased. We conclude that augmentation of the NO-cGMP cascade induces anxiogenic-like effect in mice.  相似文献   

17.
Chloropicrin (CCl3NO2) is a widely used soil fumigant with an unknown mechanism of acute toxicity. We investigated the possible involvement of dechlorination in CCl3NO2 toxicity by considering its metabolism, inhibition of pyruvate and succinate dehydrogenases, cytotoxicity in cultured cells, and interaction with hemoproteins. In a newly discovered pathway, CCl3NO2 is metabolized to thiophosgene, which is characterized as the cyclic cysteine adduct (raphanusamic acid) in the urine of mice. CCl3NO2 inhibits porcine heart pyruvate dehydrogenase complex (IC-50 4 microM) and mouse liver succinate dehydrogenase complex (IC-50 13 microM), whereas its dehalogenated metabolites (CHCl2NO2 and CH2ClNO2) are more than 10 times less effective. The inhibitory potency of CCl3NO2 for these dehydrogenase complexes is similar to that of captan, folpet, and dichlone fungicides (IC-50 2-6 microM). CCl3NO2 cytotoxicity with Hepa 1c1c7+ mouse hepatoma cells (IC-50 9 microM) is not correlated with glutathione depletion. Mice treated intraperitoneally with CCl3NO2 at 50 mg/kg but not with an equivalent dose of CHCl2NO2 show increased concentrations of oxyhemoglobin in liver. The acute toxicity of CCl3NO2 in mice is due to the parent compound or metabolites other than CHCl2NO2 or CH2ClNO2 and may be associated with inhibition of the pyruvate dehydrogenase complex and elevated oxyhemoglobin.  相似文献   

18.
With increasing use of genetically modified mice to study endothelial nitric oxide (NO) biology, methods for reliable quantification of vascular NO production by mouse tissues are crucial. We describe a technique based on electron paramagnetic resonance (EPR) spectroscopy, using colloid iron (II) diethyldithiocarbamate [Fe(DETC)2], to trap NO. A signal was seen from C57BL/6 mice aortas incubated with Fe(DETC)2, that increased 4.7-fold on stimulation with calcium ionophore A23187 [3.45+/-0.13 vs 0.73+/-0.13au (arbitrary units)]. The signal increased linearly with incubation time (r(2) = 0.93), but was abolished by addition of N(G)-nitro-l-arginine methyl ester (L-NAME) or endothelial removal. Stimulated aortas from eNOS knockout mice had virtually undetectable signals (0.14+/-0.06 vs 3.17+/-0.21 au in littermate controls). However, the signal was doubled from mice with transgenic eNOS overexpression (7.17+/-0.76 vs 3.37+/-0.43 au in littermate controls). We conclude that EPR is a useful tool for direct NO quantification in mouse vessels.  相似文献   

19.
This paper discusses in vivo detection of nitric oxide (NO) distribution in endotoxin-treated mice using L-band (1.1 GHz) electron paramagnetic resonance spectroscopy (EPR) in combination with the hydrophilic NO trapping complex: N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). MGD-Fe-NO complex is found in the upper abdomen (liver region), lower abdomen (kidney and urinary bladder) and head region of ICR mice. Experiments with nitric oxide synthase (NOS) inhibition and 15N-labeled L-arginine as NOS substrate verify the origin of trapped NO from L-arginine. However, contribution from a 'nonenzymatic' NO generation pathway can not be ruled out. This paper further examines potential artifacts, which may arise in experiments using dithiocarbamate-iron complexes as NO trapping agents.  相似文献   

20.
The bioavailability of endothelial nitric oxide (NO) is regulated by transition metals but their mechanisms of action on NO synthesis and degradation are not clearly understood. Using differential pulse amperometry and NO microelectrodes, local NO concentration was measured at the surface of cultured human umbilical vein endothelial cells (HUVECs) stimulated by histamine or thrombin in the presence of transition metal chelators. The agonist-activated NO release required both extracellular Ca2+ and transition metals. In the presence of 1 mM external Ca2+, a low concentration of EGTA (5 microM) inhibited by 40% the NO release from stimulated HUVECs. In the presence of extracellular L-arginine, the inhibitory effect of EGTA was even more marked and, in its absence, it was suppressed by adding exogenous superoxide dismutase. The decrease in NO release induced by the copper chelators, cuprizone and DETC, suggests that extracellular traces of Cu2+ could regulate NO availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号