首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proliferative kidney disease (PKD), caused by the malacosporean parasite, Tetracapsuloides bryosalmonae, is a major disease of salmonid culture both in western Europe and North America. The fish are infected from spores that develop within freshwater bryozoans and are released into the water column. Although sporogenesis has been studied in the bryozoan host and occurs within sacs, the formation of these sacs from presaccular stages has only been hypothesized. Examination of infected bryozoans by using a range of techniques identified proliferating, presaccular amoeboid stages of T. bryosalmonae on the body wall of the bryozoan Fredericella sultana. These stages possessed unique electron-dense bodies and were observed as aggregating within the bryozoan metacoel, differentiating to form spore sacs. Spore sac growth was associated with the assimilation of the presaccular parasites rather than through cryptomitosis of sac mural cells. This sac formation through aggregation and assimilation suggests an intriguing mechanism by which T. bryosalmonae can cross-fertilize.  相似文献   

2.
3.
Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T. bryosalmonae in fish kidney and released in fish urine; spores of T. bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.  相似文献   

4.
Laboratory-reared colonies of the bryozoans Fredericella sultana and Plumatella fungosa were placed upstream of 2 fish farms endemic for salmonid proliferative kidney disease (PKD) to assess rates of infection of bryozoans by Tetracapsuloides bryosalmonae, the causative agent of PKD. Colonies were deployed in the field for 8 trial periods of 2 wk each throughout the summer of 2001. Following each trial, bryozoan colonies were maintained in laboratory culture for 28 d and were regularly monitored for infection by searching for sac stages of T. bryosalmonae. Infections were never identified by observations of sac stages, however positive PCR results and sequencing of cultured material confirmed that cryptic infections were present in colonies of both species deployed at one site. The possibility that PCR results reflected contamination of surfaces of bryozoans can be excluded, given the short period of spore viability of T. bryosalmonae. Highest rates of infection occurred when 4 of 23 colonies of F. sultana and 1 of 12 colonies of P. fungosa were infected during the period 10 to 24 July. No infections were detected from mid-August to late October at this site. None of the colonies at the other site became infected throughout the period of study. Our data provide the first estimates of infection rates of bryozoans by T. bryosalmonae. Additionally, they provide evidence that a cryptic stage can be maintained within bryozoan hosts for a period of 4 to 6 wk.  相似文献   

5.
Proliferative kidney disease (PKD) is a hyperplastic condition of the lymphoid tissue of salmonids infected with the spores of Tetracapsula bryosalmonae, a myxozoan parasite formerly designated PKX, which has recently been described as a parasite of several species of bryozoans. The occurrence of PKD is generally associated with seasonal increase in water temperature, with research indicating that transmission of the disease does not occur below 12 to 13 degrees C. This suggested that the infectious stages are absent from about November to March/April. Here we document the transmission of PKD at water temperatures and seasons previously considered to be non permissive for PKD infection. The exposure of naive rainbow trout Oncorhynchus mykiss (Walbaum) to PKD-infected water ranging from 8 to 13 degrees C during the Autumn, Winter and early Spring, resulted in the infection of kidney interstitium once the trout were transferred to 16 degrees C. In addition, cohabitation studies were conducted with the bryozoan host Fredericella sultana collected from a river at times of low seasonal temperatures because this bryozoan species overwinters as living colonies. Cohabitation of trout with colonies of F sultana in parasite-free city water at 16 degrees C, also led to renal lymphoid tissue infection with the parasite and even to nephromegaly. Our results provide evidence that the infectious stages of T bryosalmonae for rainbow trout were present in the water throughout the entire year and that the impact of temperature on the development of PKD is primarily a result of the kinetics of Tetracapsula multiplication in bryozoan and fish hosts.  相似文献   

6.
Tetracapsuloides bryosalmonae is a myxozoan parasite of salmonids and freshwater bryozoans, which causes proliferative kidney disease (PKD) in the fish host. To test which fish species are able to transmit T. bryosalmonae to bryozoans, an infection experiment was conducted with 5 PKD-sensitive fish species from different genera. Rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, brook trout Salvelinus fontinalis, grayling Thymallus thymallus and northern pike Esox lucius were cohabitated with T. bryosalmonae-infected Fredericella sultana colonies and then subsequently cohabitated with statoblast-reared parasite free Bryozoa. Statoblasts from infected colonies were tested by PCR to detect cryptic stages of T. bryosalmonae, which may indicate vertical transmission of the parasite. In this study, brown trout and brook trout were able to infect Bryozoa, while there was no evidence that rainbow trout and grayling were able to do so. Few interstitial kidney stages of the parasite were detected by immunohistochemistry in brown trout and brook trout, while rainbow trout and grayling showed marked proliferation of renal interstitial tissue and macrophages with numerous parasite cells. Intraluminal stages in the kidney tubules were only detected in brown trout and rainbow trout. In contrast to previous observations, pike was not susceptible to PKD in these trials according to the results of T. bryosalmonae-specific PCR. No DNA of T. bryosalmonae was detected in any statoblast.  相似文献   

7.
Abstract. Myxozoans belonging to the recently described class Malacosporea parasitize freshwater bryozoans during at least part of their life cycle. There are at present only two species described in this class: Buddenbrockia plumatellae and Tetracapsuloides bryosalmonae . The former can exist as vermiform and sac-like stages in bryozoan hosts. The latter, in addition to forming sac-like stages in bryozoans, is the causative agent of salmonid proliferative kidney disease (PKD). We undertook molecular and ultrastructural investigations of new malacosporean material to further resolve malacosporean diversity and systematics. Phylogenetic analyses of 18S rDNA sequences provided evidence for two new putative species belonging to the genus Buddenbrockia , revealing a two-fold increase in the diversity of malacosporeans known to date. One new malacosporean is a vermiform parasite infecting the bryozoan Fredericella sultana and the other occurs as sac-like stages in the rare bryozoan, Lophopus crystallinus . Both bryozoans represent new hosts for the genus Buddenbrockia . Our results have established that the malacosporean which infected F. sultana was not a vermiform stage of T. bryosalmonae , although it was collected from a site endemic for PKD. Ultrastructural investigation of new material of B . plumatellae revealed the presence of numerous external tubes associated with developing polar capsules, confirming that the absence of external tubes should no longer be considered as a character of the class Malacosporea.  相似文献   

8.
Proliferative kidney disease (PKD), caused by the myxozoan parasite Tetracapsuloides bryosalmonae, is well documented as a seasonal disease of rainbow trout Oncorhynchus mykiss. Water temperatures influence the course of the infection both within the fish and the invertebrate host, the recovery of fish from the disease being accelerated with decreasing water temperatures. During this study, groups of rainbow trout were held at a constant temperature (18 degrees C) for a sustained period of time following initial exposure to T. bryosalmonae. While the majority of these fish had recovered from the clinical disease after 9 mo, 10% remained infected, showing clinical signs of disease. A histological study revealed that the majority exhibited very high parasite loads and unusually severe symptoms of PKD. This demonstrates that while most rainbow trout can recover from PKD independent of water temperature, there exists a sub-population that cannot.  相似文献   

9.
Salmonid proliferative kidney disease (PKD) is caused by the myxozoan Tetracapsuloides bryosalmonae. Given the serious and apparently growing impact of PKD on farmed and wild salmonids, we undertook a phylogeographic study to gain insights into the history of genealogical lineages of T. bryosalmonae in Europe and North America, and to determine if the global expansion of rainbow trout farming has spread the disease. Phylogenetic analyses of internal transcribed spacer 1 sequences revealed a clade composed of all North American sequences plus a subset of Italian and French sequences. High genetic diversity in North America and the absence of genotypes diagnostic of the North American clade in the rest of Europe imply that southern Europe was colonized by immigration from North America; however, sequence divergence suggests that this colonization substantially pre-dated fisheries activities. Furthermore, the lack of southern European lineages in the rest of Europe, despite widespread rainbow trout farming, indicates that T. bryosalmonae is not transported through fisheries activities. This result strikingly contrasts with the commonness of fisheries-related introductions of other pathogens and parasites and indicates that fishes may be dead-end hosts. Our results also demonstrate that European strains of T. bryosalmonae infect and induce PKD in rainbow trout introduced to Europe.  相似文献   

10.
Extensive mortality in Atlantic salmon fry was reported in the River Aelva from 2002 to 2004. Dead fish were collected in late summer 2006, and live fish were sampled by electrofishing in September the same year. At autopsy and in histological sections, the fish kidneys were found to be pale and considerably enlarged. Proliferative lesions with characteristic PKX cells were seen in a majority of the fish. DNA from kidney samples of diseased fish was subjected to PCR and sequencing, and the amplified sequences matched those of Tetracapsuloides bryosalmonae. We concluded that this myxozoan transmitted from bryozoans was the main cause of the observed mortality in salmon fry in 2006. Results from quantitative electrofishing in 2005 and 2006, combined with the observed fry mortality from 2002 to 2004, show that the smolt production in the river is severely reduced and that T. bryosalmonae is the most likely explanation for this decline. The present study is the first to report a considerable negative population effect in wild Atlantic salmon due to proliferative kidney disease (PKD). It also represents the northernmost PKD outbreak in wild fish. The river is regulated for hydroelectric power purposes, causing reduced water flow and elevated summer temperatures, and the present PKD outbreak may serve as an example of increased disease vulnerability of northern fish populations in a warmer climate.  相似文献   

11.
The myxozoan, Tetracapsuloides bryosalmonae, exploits freshwater bryozoans as definitive hosts, occurring as cryptic stages in bryozoan colonies during covert infections and as spore-forming sacs during overt infections. Spores released from sacs are infective to salmonid fish, causing the devastating Proliferative Kidney Disease (PKD). We undertook laboratory studies using mesocosm systems running at 10, 14 and 20 °C to determine how infection by T. bryosalmonae and water temperature influence fitness of one of its most important bryozoan hosts, Fredericella sultana, over a period of 4 weeks. The effects of infection were context-dependent and often undetectable. Covert infections appear to pose very low energetic costs. Thus, we found that growth of covertly infected F. sultana colonies was similar to that of uninfected colonies regardless of temperature, as was the propensity to produce dormant resting stages (statoblasts). Production of statoblasts, however, was associated with decreased growth. Overt infections imposed greater effects on correlates of host fitness by: (i) reducing growth rates at the two higher temperatures; (ii) increasing mortality rates at the highest temperature; (iii) inhibiting statoblast production. Our results indicate that parasitism should have a relatively small effect on host fitness in the field as the negative effects of infection were mainly expressed in environmentally extreme conditions (20 °C for 4 weeks). The generally low virulence of T. bryosalmonae is similar to that recently demonstrated for another myxozoan endoparasite of freshwater bryozoans. The unique opportunity for extensive vertical transmission in these colonial invertebrate hosts couples the reproductive interests of host and parasite and may well give rise to the low virulence that characterises these systems. Our study implies that climate change can be expected to exacerbate PKD outbreaks and increase the geographic range of PKD as a result of the combined responses of T. bryosalmonae and its bryozoan hosts to higher temperatures.  相似文献   

12.
Morris DJ  Adams A 《Parasitology》2008,135(9):1075-1092
Tetracapsuloides bryosalmonae is the myxozoan that causes the commercially and ecologically important proliferative kidney disease of salmonid fish species. Immunohistochemistry and electron microscopy were used to examine the development of this parasite within the kidney of the brown trout Salmo trutta. The main replicative phase of T. bryosalmonae is a cell doublet composed of a primary cell and a single secondary cell. Engulfment of one secondary cell by another to form a secondary-tertiary doublet (S-T doublet) heralded the onset of sporogony whereupon the parasite migrated to the kidney tubule lumen. Within the tubule, the parasite transformed into a pseudoplasmodium and anchored to the tubule epithelial cells via pseudopodial extensions. Within each pseudoplasmodium developed a single spore, composed of 4 valve cells, 2 polar capsules and 1 sporoplasm. The pseudoplasmodia formed clusters suggesting that large numbers of spores develop within the fish. This examination of T. bryosalmonae suggests that the main replicative phase of freshwater myxozoans within vertebrates is via direct replication of cell doublets rather than through the rupturing of extrasporogonic stages, while tertiary cell formation relates only to sporogony. Taken in conjunction with existing phylogenetic data, 5 distinct sporogonial sequences are identified for the Myxozoa.  相似文献   

13.
Proliferative kidney disease (PKD) of salmonid fishes is caused by the extrasporogonic stage of an enigmatic myxozoan, referred to as PKX. Sporogenesis occurs in the renal tubules, resulting in monosporous pseudoplasmodia. The spores are ovoid with indistinguishable valves and measure 12 microm in length and 7 microm in width. Two spherical polar capsules (2 microm diameter) with 4 coils occur at the anterior end of the spore. Prominent capsulogenic cell nuclei posterior to the polar capsules are evident in histological sections stained with hematoxylin and eosin. Regardless of the true nature of the valves (indistinguishable or absent), this myxozoan is morphologically distinct from all other described members of the phylum Myxozoa. Comparisons of small subunit rDNA sequences of PKX with other myxozoans demonstrated that it branches from all other members of the myxosporeans from fish examined thus far, including representatives of the phenotypically most closely related genera, Sphaerospora and Parvicapsula. Recent reports, based on rDNA comparisons, indicate that the alternate stage of PKX occurs in bryozoans, and that PKX clusters in a clade with Tetracapsula bryozoides. Our analyses and those of others, along with phenotypic observations, indicate that salmonids are the primary myxosporean hosts for PKX, that the cryptic spores of PKX in salmonids are the fully formed myxospores as they occur in the fish host, and that PKX represents distinct species that we previously place in the genus Tetracapsula in the family Saccosporidae. The latter 2 taxa were described based on stages from bryozoans, and the myxosporean stage in fish of the type species, T. bryozoides, has not been identified (if it exists). Thus, more complete resolution of the life cycle of both PKX and T. bryozoides, as well as more genetic data, are required to determine the precise relationship of these organisms.  相似文献   

14.
Tetracapsula bryosalmonae, formerly PKX organism, is a myxozoan parasite that causes proliferative kidney disease in salmonid fish. Its primary hosts, in which it undergoes a sexual phase, are phylactolaemate bryozoans. It develops in the bryozoan coelomic cavity as freely floating sacs which contain two types of cells, stellate cells and sporoplasmogenic cells, which become organised as spores. Eight stellate cells differentiate as four capsulogenic cells and four valve cells which surround a single sporoplasmogenic cell. The sporoplasmogenic cell undergoes meiosis and cytoplasmic fission to produce two sporoplasms with haploid nuclei. Sporoplasms contain secondary cells. The unusual development supports previously obtained data from 18S rDNA sequences, indicating that species of Tetracapsula form a clade. It diverged early in the evolution of the Myxozoa, before the radiation that gave rise to the better known genera belonging to the two orders in the single class Myxosporea. The genus Tetracapsula as seen in bryozoans shares some of the characters unique to the myxosporean phase and others typical of the actinosporean phase of genera belonging to the class Myxosporea. However, it exhibits other features which are not found in either phase. A new class Malacosporea and order Malacovalvulida are proposed to accommodate the family Saccosporidae and genus Tetracapsula. Special features of the new class are the sac-like proliferative body, valve cells not covering the exit point of the polar filament, lack of a stopper-like structure sealing the exit, maintenance of valve cell integrity even at spore maturity, absence of hardened spore walls and unique structure of sporoplasmosomes in the sporoplasms.  相似文献   

15.
Myxozoans are common parasites of fish kidneys, with most having specific sites of development. Five specific sites of development include (1) the lumen of renal tubules, (2) the renal corpuscles followed by location in renal tubules, (3) intracellular location within the tubular epithelium followed by a stage in the lumen of the ducts, (4) haematopoietic tissue with dispersed trophozoites, and (5) haematopoietic tissue with large, localized plasmodia. A coelozoic development preceded by presporogonic multiplication characterises most Sphaerospora spp. Early plasmodial stages of Myxidium and Chloromyxum spp. are frequently found in the renal glomerules, while spores develop in the urinary channels in plasmodia released from the renal corpuscles. In Hoferellus and Myxobilatus spp., spores are formed in small plasmodia inside the lumen of the urinary ducts after several internal cleavages in the epithelium of renal tubules. The presence of dispersed trophozoites among haematopoietic tissue cells of the renal interstitium characterises the development of Sphaerospora tincae and Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD). Spores of S. tincae are formed at the place of plasmodial development, while spore formation of PKD is in the renal tubules. A large mass of spores, often surrounded by a connective tissue capsule, can appear in the renal interstitium during infections by several Myxobolus spp.; furthermore, a large number of these spores formed in plasmodia in distant tissues can also accumulate in melano-macrophage centres.  相似文献   

16.
Buddenbrockia plumatellae, an enigmatic worm-like myxozoan, was observed as continuously writhing free and attached 'worms' and as free mature spores in the coelom of the freshwater bryozoans Plumatella fungosa, Hyalinella punctata, and Fredericella sp. 'Worm' numbers could double every three days. 'Worms' and spores could be expelled from colonies by external pressure. Some mature 'worms' exited actively, entraining release of free spores, and gradually ceased movement outside the host. Bryozoans sealed off infected regions of the colony. Infected colonies grew slowly, produced no statoblasts, and eventually regressed and died. Transmission was not achieved and prevalence was low. Electron microscopy of 'worms' revealed a single layer of mural cells on a fibrous basal lamina overlying four longitudinal muscle blocks and an inner sheet of two types of proliferating cells, an organization indicative of the bilaterian ancestry of the Myxozoa. Primary type A cells were attached directly by striated tubules to mural cells at positions between muscle blocks. Secondary type A cells had a secretory function. Type B cells underwent meiosis and subsequently developed to typical malacosporean myxozoan spores filling the internal cavity of the 'worms'. External tubes were formed during capsulogenesis in 'worms' from Fredericella sp. Tetracapsula bryozoides is synonymised with Buddenbrockia plumatellae and a new genus is proposed for Tetracapsula bryosalmonae.  相似文献   

17.
Sphaerospores were found among three species of fish examined from waters known to be enzootic for proliferative kidney disease (PKD) of salmonids. They were detected in the renal tubules of both hatchery-reared rainbow trout (Salmo gairdneri) exposed to the infectious stage of PKD and in chubs (Gila bicolor) in the headwaters of a hatchery where PKD is enzootic. Sticklebacks (Gasterosteus aculeatus) collected near net pens where Pacific salmon had experienced a PKD epizootic were also found to harbor sphaerospores in the lumen of the kidney tubules. The latter two host species contained developmental stages of a myxosporidan in the blood and in the lumen of the kidney tubules which are similar to those of PKX, the causative agent of PKD in salmonid fish. The sphaerospores observed in the rainbow trout are the first to be observed in this species. The similarity to previously observed developmental stages, rarity, and presence of these sphaerospores in salmonid fish from a hatchery where PKD is enzootic suggest that they are the most mature stage of the PKX myxosporidan yet observed.  相似文献   

18.
ABSTRACT. Sphaerospores were found among three species of fish examined from waters known to be enzootic for proliferative kidney disease (PKD) of salmonids. They were detected in the renal tubules of both hatchery-reared rainbow trout (Salmo gairdneri) exposed to the infectious stage of PKD and in chubs (Gila bicolor) in the headwaters of a hatchery where PKD is enzootic. Sticklebacks (Gasterosteus aculeatus) collected near net pens where Pacific salmon had experienced a PKD epizootic were also found to harbor sphaerospores in the lumen of the kidney tubules. The latter two host species contained developmental stages of a myxosporidan in the blood and in the lumen of the kidney tubules which are similar to those of PKX, the causative agent of PKD in salmonid fish. The sphaerospores observed in the rainbow trout are the first to be observed in this species. The similarity to previously observed developmental stages, rarity, and presence of these sphaerospores in salmonid fish from a hatchery where PKD is enzootic suggest that they are the most mature stage of the PKX myxosporidan yet observed.  相似文献   

19.
Summary Polycystic kidney disease (PKD) is characterized by multiple renal cysts that are lined by epithelium and filled with fluid. PKD may result from one of a number of factors, either inherited or environmental. In this study, we have compared two mouse models in which PKD results from a genetic cause. In the C57BL/6J-cpk model, the mutated gene is unknown. In the other model, an SV40 large T antigen transgene causes renal cysts. We examined cultured cells from the kidneys of these mouse models, comparing growth characteristics. Although several features of PKD lead one to expect that the epithelial cells lining the cysts would have an increased rate of proliferation in culture, we found that they did not. The implications of these findings are discussed.  相似文献   

20.
Proliferative kidney disease (PKD) is an endoparasitic disease of salmonids caused by the myxozoan parasite Tetracapsuloides bryosalmonae. We recently described the development of the disease from initial infection until manifestation of clinical disease signs in rainbow trout held at 2 water temperatures, 12 and 18°C. The aim of the present study is to investigate whether (1) infected fish surviving the clinical phase would recover from renal pathological changes, (2) whether they would be able to reduce the parasite load in the kidneys, and (3) whether water temperatures would influence renal recovery and parasite clearance. At 18°C, fish showed a gradual recovery of normal kidney morphology which was associated with a decline in parasite numbers and infection prevalence. Fish kept at 12°C initially showed an enhancement of kidney lesions before recovery of normal kidney morphology took place. The decrease in renal parasite load was retarded compared to 18°C. The results from the present study provide evidence that rainbow trout surviving the clinical phase of PKD are able to (1) fully restore renal structure, and (2) significantly reduce renal parasite loads, although 100% clearance was not achieved within the experimental period of this study. Water temperature influences the rate but not the outcome of the recovery process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号