首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this work was to define the metabolic factors which regulate the respiratory pathways in trangenic potato tubers. We previously found that respiration is enhanced in transgenic tubers which express a yeast invertase and a glucokinase from Zymomonas mobilis . In this study we investigated glycolysis in three further transgenic potato lines with profound changes in the mobilization of sucrose. We studied antisense ADPglucose pyrophosphorylase lines which are characterized by a reduction in starch accumulation and a significant build up of sucrose and related metabolic intermediates. We also report the generation of two novel double transgenic lines where the yeast invertase is expressed specifically in tubers of the ADPglucose pyrophosphorylase antisense line, targeted to either the cytosol or apopolast. We evaluated whether the localization of sucrose cleavage had an impact on the glycolytic induction, and assessed if invertase expression in the high-sucrose background had any further effects on glycolysis. We found that induction of the glycolytic enzymes only occurs when the invertase is targeted to the cytosol, and that the extent of this induction was comparable in the wild type and antisenseADPglucose pyrophosphorylase backgrounds. We conclude that the signal regulating glycolysis is directly linked to cytosolic sucrose hydrolysis.  相似文献   

2.
The expression of a heterologous invertase in potato tubers (Solanum tuberosum) in either the cytosol or apoplast leads to a decrease in total sucrose content and to an increase in glucose. Depending on the targeting of the enzyme different changes in phenotype and metabolism of the tubers occur: the cytosolic invertase expressing tubers show an increase in the glycolytic flux, accumulation of amino acids and organic acids, and the appearance of novel disaccharides; however, these changes are not observed when the enzyme is expressed in the apoplast [Roessner et al. (2001). Plant Cell, 13, 11-29]. The analysis of these lines raised several questions concerning the regulation of compartmentation of metabolites in potato tubers. In the current study we addressed these questions by performing comparative subcellular metabolite profiling. We demonstrate that: (i) hexoses accumulate in the vacuole independently of their site of production, but that the cytosolic invertase expression led to a strong increase in the cytosolic glucose concentration and decrease in cytosolic sucrose, whereas these effects were more moderate in the apoplastic expressors; (ii) three out of four of the novel compounds found in the cytosolic overexpressors accumulate in the same compartment; (iii) despite changes in absolute cellular content the subcellular distribution of amino acids was invariant in the invertase overexpressing tubers. These results are discussed in the context of current models of the compartmentation of primary metabolism in heterotrophic plant tissues. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Here we investigate the role of hexoses in the metabolism of the developing potato (Solanum tuberosum) tuber by the expression of a bacterial xylose isomerase which catalyzes the interconversion of glucose and fructose. Previously, we found that glycolysis was induced in transgenic tubers expressing a yeast invertase in the cytosol and postulated that this was due either to the decreased levels of sucrose or to effects downstream of the sucrose cleavage. In the present study xylose isomerase was expressed under the control of the tuber-specific patatin promoter. Selected transformants exhibited minor changes in the levels of tuber glucose and fructose but not in sucrose. Analysis of the enzyme activities of the glycolytic pathway revealed minor yet significant increases in the maximal catalytic activities of aldolase and glyceraldehyde 3-phosphate dehydrogenase but no increase in the activities of other enzymes of glycolysis. These lines were also characterized by an elevated tuber number, glycolytic and sucrose synthetic fluxes and in some metabolite levels downstream of glycolysis. When considered together these data suggest that the perturbation of hexose levels can result in increased glycolytic and sucrose (re)synthetic fluxes in the potato tuber even in the absence of changes in the level of sucrose. The consequences of altering hexose levels in the tuber are, however, not as severe as those observed following perturbation of the level of tuber sucrose.  相似文献   

4.
The original aim of this work was to increase starch accumulation in potato tubers by enhancing their capacity to metabolise sucrose. We previously reported that specific expression of a yeast invertase in the cytosol of tubers led to a 95% reduction in sucrose content, but that this was accompanied by a larger accumulation of glucose and a reduction in starch. In the present paper we introduced a bacterial glucokinase from Zymomonas mobilis into an invertase-expressing transgenic line, with the intention of bringing the glucose into metabolism. Transgenic lines were obtained with up to threefold more glucokinase activity than in the parent invertase line and which did not accumulate glucose. Unexpectedly, there was a further dramatic reduction in starch content, down to 35% of wild-type levels. Biochemical analysis of growing tuber tissue revealed large increases in the metabolic intermediates of glycolysis, organic acids and amino acids, two- to threefold increases in the maximum catalytic activities of key enzymes in the respiratory pathways, and three- to fivefold increases in carbon dioxide production. These changes occur in the lines expressing invertase, and are accentuated following introduction of the second transgene, glucokinase. We conclude that the expression of invertase in potato tubers leads to an increased flux through the glycolytic pathway at the expense of starch synthesis and that heterologous overexpression of glucokinase enhances this change in partitioning.  相似文献   

5.
As reported in a previous paper (Plant, Cell and Environment 24, 357–365, 2001), introduction of sucrose phosphorylase into the cytosol of potato results in increased respiration, an inhibition of starch accumulation and decreased tuber yield. Herein a more detailed investigation into the effect of sucrose phosphorylase expression on tuber metabolism, in order to understand why storage and growth are impaired is described. (1) Although the activity of the introduced sucrose phosphorylase was low and accounted for less than 10% of that of sucrose synthase its expression led to a decrease in the activities of enzymes of starch synthesis relative to enzymes of glycolysis and relative to total amylolytic activity. (2) Incubation of tuber discs in [14C]glucose revealed that the transformants display a two‐fold increase of the unidirectional rate of sucrose breakdown. However this was largely compensated by a large stimulation of sucrose re‐synthesis and therefore the net rate of sucrose breakdown was not greatly affected. Despite this fact major shifts in tuber metabolism, including depletion of sucrose to very low levels, higher rates of glycolysis, and larger pools of amino acids were observed in these lines. (3) Expression of sucrose phosphorylase led to a decrease of the cellular ATP/ADP ratio and energy charge in intact growing tubers. It was estimated that at least 30% of the ATP formed during respiration is consumed as a result of the large acceleration of the cycle of sucrose breakdown and re‐synthesis in the transformants. Although the absolute rate of starch synthesis in short‐term labelling experiments with discs rose, starch synthesis fell relative to other fluxes including respiration, and the overall starch content of the tubers was lower than in wild‐type tubers. (4) External supply of amino acids to replace sucrose as an osmoticum led to a feed‐back inhibition of glycolysis, but did not restore allocation to starch. (5) However, an external supply of the non‐metabolizable sucrose analogue palatinose – but not sucrose itself – stimulated flux to starch in the transformants. (6) The results indicate that the impaired performance of sucrose phosphorylase‐expressing tubers is attributable to decreased levels of sucrose and increased energy consumption during sucrose futile cycling, and imply that sucrose degradation via sucrose synthase is important to maintain a relatively large sucrose pool and to minimize the ATP consumption required for normal metabolic function in the wild type.  相似文献   

6.
The constitutive cytosolic expression of a yeast (Saccharomyces cerevisiae) invertase within potato (Solanum tuberosum) tubers has previously been documented to produce a dramatic metabolic phenotype in which glycolysis, respiration and amino acid synthesis are markedly enhanced at the cost of starch synthesis. These transgenic lines were further characterised by a massive cycle of sucrose degradation and resynthesis via sucrose-phosphate synthase. We have recently developed a B33 patatin driven alc gene construct allowing tight chemical control of gene expression following supply of acetaldehyde with minimal pleiotropic effects of the inducing agent on metabolism. This construct was used for chemical induction of the yeast invertase gene after 10-weeks growth to dissect the complex metabolic phenotype obtained after constitute expression. Inducible expression led to increased invertase activity within 24 h in well-defined areas within growing tubers. Although the sucrose levels were reduced, there was no effect on the levels of starch whilst levels of many amino acids decreased. Labelling experiments revealed that these lines exhibited increased rates of sucrose cycling, whereas rates of glycolysis and of starch synthesis were not substantially changed. From these results we conclude that sucrose cycling is stimulated in response to a short-term increase in the rate of sucrose mobilisation, providing evidence for a role of sucrose cycling as a buffering capacity that regulates the net rate of sucrose usage. In contrast, the dramatic increase in hexose-phosphate levels and the switch from starch synthesis to respiration seen on the constitutive expression of the invertase was not observed in the inducible lines, suggesting that this is the result of cumulative pleiotropic effects that occurred when the transgene was expressed throughout development.  相似文献   

7.
Exposure to low but nonfreezing temperatures induces the breakdown of starch and the accumulation of sucrose, glucose and fructose in potato tubers, a complex phenomenon known as low-temperature sweetening (LTS). A kinetic model for the degradation of starch to sucrose, fructose, glucose, hexose phosphates and carbon dioxide in 2 degrees C-stored mature Solanum tuberosum cv. Norchip (LTS-sensitive) and Solanum tuberosum seedlling ND860-2 (LTS-tolerant) tubers is presented in this work. Analysis of sugar accumulation data in tubers grown in 1993 and 1994 showed no significant differences in the rates of conversion of starch to hexose phosphates and hexose phosphates to sucrose for both cultivars (P > 0.05). The rate constant corresponding to invertase activity was 2.3 day(-1) for Norchip tubers and 1.1 day(-1) for ND860-2 tubers grown in 1993 (P < or = 0.05); however, no significant differences were observed in invertase activity for 1994-grown tubers (P > 0.05). The accumulation of the reducing sugars fructose and glucose was found to be dependent on the relative difference in rate constants corresponding to invertase activity and glycolytic/respiratory capacity. This difference was 3-4 fold greater for Norchip in 1993, and 4-6 fold greater for Norchip in 1994, than for ND860-2 (P < or = 0.05). Results from the analysis also suggest that the amount of available starch for degradation was greater in Norchip tubers than ND860-2 tubers (P < or = 0.05). Our analysis suggests that tubers with decreased invertase activity coupled to increased glycolytic/respiratory capacity should be more tolerant to low-temperature stress.  相似文献   

8.
PPi has previously been implicated specifically in the co-ordination of the sucrose–starch transition and in the broader context of its role as co-factor in heterotrophic plant metabolism. In order to assess the compartmentation of pyrophosphate (PPi) metabolism in the potato tuber we analysed the effect of expressing a bacterial pyrophosphatase in the amyloplast of wild type tubers or in the cytosol or amyloplast of invertase-expressing tubers. The second and third approaches were adopted since we have previously characterized the invertase expressing lines to both exhibit highly altered sucrose metabolism and to contain elevated levels of PPi (Farré et al. (2000a) Plant Physiol 123:681) and therefore this background rendered questions concerning the level of communication between the plastidic and cytosolic pyrophosphate pools relatively facile. In this study we observed that the increase in PPi in the invertase expressing lines was mainly confined to the cytosol. Accordingly, the expression of a bacterial pyrophosphatase in the plastid of either wild type or invertase-expressing tubers did not lead to a decrease in total PPi content. However, the expression of the heterologous pyrophosphatase in␣the cytosol of cytosolic invertase-expressing tubers led to strong metabolic changes. These results are discussed both with respect to our previous hypotheses and to current models of the compartmentation of potato tuber metabolism.  相似文献   

9.
The early stages of tuber development are characterized by cell division, high metabolic activity, and the predominance of invertase as the sucrose (Suc) cleaving activity. However, during the subsequent phase of starch accumulation the cleavage of Suc occurs primarily by the action of Suc synthase. The mechanism that is responsible for this switch in Suc cleaving activities is currently unknown. One striking difference between the invertase and Suc synthase mediated cleavage of Suc is the direct involvement of inorganic pyrophosphate (PPi) in the latter case. There is presently no convincing explanation of how the PPi required to support this process is generated in potato (Solanum tuberosum) tubers. The major site of PPi production in a maturing potato tubers is likely to be the reaction catalyzed by ADP-glucose pyrophosphorylase, the first committed step of starch biosynthesis in amyloplasts. We present data based on the analysis of the PPi levels in various transgenic plants altered in starch and Suc metabolism that support the hypothesis that PPi produced in the plastid is used to support cytosolic Suc breakdown and that PPi is an important coordinator of cytosolic and plastidial metabolism in potato tubers.  相似文献   

10.
Overexpression of inorganic pyrophosphatase (PPase) from Escherichia coli in the cytosol of plants (ppa1 plants) leads to a decrease of inorganic pyrophosphate (PPi; U. Sonnewald, 1992, Plant J 2: 571–581). The consequences for sucrose-starch interconversions have now been studied in growing potato (Solanum tuberosum L. cv. Desirée) tubers. Sucrose is degraded via sucrose synthase and UDP-glucose pyrophosphorylase in growing tubers, and it was expected that the low PPi in the ppa1 transformants would restrict the mobilisation of sucrose and conversion to starch. Over-expression of PPase resulted in an accumulation of sucrose and UDP-glucose, and decreased concentrations of hexose phosphates and glycerate-3-phosphate in growing ppa1 tubers. Unexpectedly, the rate of degradation of [14C] sucrose was increased by up to 30%, the rate of starch synthesis was increased, and the starch content was increased by 20–30% in ppa1 tubers compared to wild-type tubers. Reasons for this unexpectedly efficient conversion of sucrose to starch in the ppa1 tubers were investigated. (i) The transformed tubers contained increased activities of several enzymes required for sucrose-starch interconversions including two- to threefold more sucrose synthase and 60% more ADP-glucose pyrophosphorylase. They also contained 30–100% increased activities of several glycolytic enzymes and amylase, increased protein, and unaltered or slightly decreased starch phosphorylase, acid invertase and mannosidase. (ii) The transformants contained higher pools of uridine nucleotides. As a result, although the UDP-glucose pool is increased two- to threefold, this does not lead to a decrease of UTP or UDP. (iii) The transformants contained twofold larger pools of ATP and ADP, and ADP-glucose was increased by up to threefold. In stored ppa1 tubers, there were no changes in the activities of glycolytic enzymes, and nucleotides did not increase. It is concluded that in growing tubers PPi has a wider significance than just being an energy donor for specific reactions in the cytosol. Increased rates of PPi hydrolysis also affect general aspects of cell activity including the levels of nucleotides and protein. Possible ways in which PPi hydrolysis could affect these processes are discussed. Received: 9 July 1997 / Accepted: 3 November 1997  相似文献   

11.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

12.
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased slightly, while hexose levels remained unaltered, compared with the wild-type controls. Similar to low sucrose-containing invertase tubers, respiration and starch breakdown were found to be accelerated during storage in palatinose-accumulating potato tubers. In contrast to invertase transgenics, however, no accumulation of phosphorylated intermediates was observed. Therefore, it is concluded that sucrose depletion rather than increased hexose metabolism triggers reserve mobilization and respiration in stored potato tubers.  相似文献   

13.
Sweetlove LJ  Kruger NJ  Hill SA 《Planta》2001,213(3):478-482
The aim of this work was to test the hypothesis that changes in cytosolic 3-phosphoglyceric acid (3-PGA) content can regulate the rate of starch synthesis in potato (Solanum tuberosum L.) tubers. The amount of 3-PGA was increased by expressing bacterial phosphofructokinase (PFK; EC 2.7.1.11) in transgenic potato tubers. The resultant 3-fold increase in PFK activity was accompanied by an increase in metabolites downstream of PFK, including a 3-fold increase in 3-PGA. There was also a decrease in metabolites upstream of PFK, most notably of glucose-6-phosphate. The increase in 3-PGA did not affect the amount of starch that accumulated in developing tubers, nor its rate of synthesis in tuber discs cut from developing tubers. This suggests that changes in cytosolic 3-PGA may not affect the rate of starch synthesis under all circumstances. We propose that in this case, a decrease in glucose-6-phosphate (which is transported into the amyloplast as a substrate for starch synthesis) may be sufficient to counteract the effect of increased 3-PGA.  相似文献   

14.
To determine the function of cytosolic phosphorylase (Pho2; EC 2.4.1.1), transgenic potato plants were created in which the expression of the enzyme was inhibited by introducing a chimeric gene containing part of the coding region for cytosolic phosphorylase linked in antisense orientation to the 35S CaMV promotor. As revealed by Northern blot analysis and native polyacrylamide gel electrophoresis, the expression of cytosolic phosphorylase was strongly inhibited in both leaves and tubers of the transgenic plants. The transgenic plants propagated from stem cuttings were morphologically indiscernible from the wild-type. However, sprouting of the transgenic potato tubers was significantly altered: compared with the wild-type, transgenic tubers produced 2.4 to 8.1 times more sprouts. When cultivated in the greenhouse, transgenic seed tubers produced two to three times more shoots than the wild-type. Inflorescences appeared earlier in the resulting plants. Many of the transgenic plants flowered two or three times successively. Transgenic plants derived from seed tubers formed 1.6 to 2.4 times as many tubers per plant as untransformed controls. The size and dry matter content of the individual tubers was not noticeably altered. Tuber yield was significantly higher in the transgenic plants. As revealed by carbohydrate determination of freshly harvested and stored tubers, starch and sucrose pools were not noticeably affected by the antisense inhibition of cytosolic phosphorylase; however, glucose and fructose levels were markedly reduced after prolonged storage. These results favour the view that cytosolic phosphorylase does not participate in starch degradation. The possible links between the reduced levels of cytosolic phosphorylase and the observed changes with respect to sprouting and flowering are discussed.  相似文献   

15.
The short-term changes in metabolism that occurred after adding glucose or sucrose to freshly cut discs from growing potato (Solanum tuberosum L.) tubers were investigated. (i) When glucose was supplied, there was a marked increase in glycolytic metabolites, and respiration was stimulated. When sucrose was supplied, amounts of glycolytic metabolites including hexose phosphates and 3-phosphoglycerate (3PGA) were similar to or lower than in control discs incubated without sugars, and respiration did not rise initially above that in control discs. This different response to sucrose and glucose was found across the concentration range 5–200 mM. A larger proportion of the metabolised 14C was converted to starch when [14C] sucrose was supplied than when [14C] glucose was supplied. The different effect on metabolite levels, respiration and starch synthesis was largest after 20–30 min, and decreased in longer incubations. (ii) When 5 or 25 mM sucrose was added in the presence of [14C] glucose, it led to a decrease in hexose phosphates and 3PGA, and a small increase in the rate of starch synthesis compared to discs incubated with glucose in the absence of sucrose. These differences were seen in a 30-min pulse and a 2-h pulse. Whereas ADP-glucose levels after adding sucrose resembled those in control discs, glucose led to a decrease in ADP-glucose. This decrease did not occur when 5 or 25 mM sucrose was added with the glucose. (iii) To check the relevance of these experiments for intact tubers, water or 100 mM mannitol, sucrose or glucose were supplied through the stolon to intact tubers for 24 h. A 0.2 mM solution of [14C] glucose was then introduced into the tubers, and its metabolism investigated during the next 30 min. Labelling of starch was increased after preincubation with sucrose, and significantly inhibited after preincubation with glucose. (iv) It is concluded that glucose and sucrose have different effects on tuber metabolism. Whereas glucose leads to a preferential stimulation of respiration, sucrose preferentially stimulates starch synthesis via a novel mechanism that allows stimulation of ADP-glucose pyrophosphorylase even though the levels of hexose phosphates and the allosteric activator 3PGA decrease. Received: 9 October 1997 / Accepted: 3 February 1998  相似文献   

16.
Zuther E  Kwart M  Willmitzer L  Heyer AG 《Planta》2004,218(5):759-766
Companion cell-specific expression of a cytosolic invertase from yeast (Saccharomyces cerevisiae) was used as a tool to synthesise oligosaccharides in the sieve element/companion cell complex and study whether oligosaccharides could be transported in the phloem of an apoplastically loading species. Potato (Solanum tuberosum L.) plants expressing the invertase under the control of the Agrobacterium tumefaciens rolC promoter produced the trisaccharide 6-kestose in leaves, which was transported via the phloem and accumulated in tubers of transgenic plants. In graft experiments with rolC invertase plants as scion and wild-type rootstocks, 6-kestose accumulated in tubers to levels comparable to sucrose. This shows that long-distance transport of oligosaccharides is possible in apoplastically loading plants, which normally transport only sucrose. The additional transport route for assimilates neither led to elevated photosynthetic activity nor to increased tuber yield. Enhanced sucrose turnover in companion cells caused large amounts of glucose and fructose to be exuded from leaf petioles, and elevated levels of sucrose were detected in phloem exudates. While the latter indicates a higher capacity for sucrose loading into the phloem due to increased metabolic activity of companion cells, the massive release of hexoses catalysed by the invertase seemed to interfere with assimilate delivery to sink organs.Abbreviations HPAEC High-performance liquid anion-exchange chromatography - SE–CCC Sieve element/companion cell complex - WT Wild type  相似文献   

17.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

18.
The aim of this work was to determine the suitability of tissue culture microtubers for the study of primary carbohydrate metabolism in potato plants (Solanum tuberosum L. cv. Desirée). We have determined the levels of key enzymes and intermediates in the pathways of sucrose metabolism, starch metabolism and glycolysis in wild type microtubers. Comparison of the metabolite levels in microtubers with a range of published studies on soil-grown developing tubers showed that the two systems were similar both in the absolute levels and in the ratios between metabolites, despite some differences in the maximum catalytic activities of some glycolytic enzymes. We conclude that in vitro grown microtubers are an adequate model system for studying primary carbohydrate metabolism in developing potato tubers.  相似文献   

19.
20.
The transfer of potato ( Solanum tuberosum ) tubers from 10 to 1°C was associated with an initial decline in the rate of CO2 output followed by a rapid increase reaching, within some 12 days, a peak which was about 3‐fold higher than at 10°C. Thereafter the rate of CO2 evolution declined gradually for the duration of the experiment. The specific rate of mitochondrial O2 uptake decreased initially, followed by a rise to a level similar to that of mitochondria prepared from tubers stored at 10°C. Low temperature decreased by 30% the capacity of the cytochrome pathway while it sharply increased the capacity of the alternative pathway. Sucrose was the first sugar to accumulate at 1°C, followed after a delay of 6‐7 days by glucose and fructose. Low temperature induced within 4‐5 days a rise in amylase activity which increased by 10‐fold after 30 days. The increase was reflected in only two out of four existing isoforms. In addition a novel isoform of amylase was detected later in storage. The induction and the accumulation of invertase mRNA and extractable activity followed the increase in sucrose but preceded that of hexoses. The activity of starch phosphorylase isoforms was not affected by temperature. There was a 3‐fold increase in chlorogenic acid at 1°C. Hypoxia strongly inhibited the accumulation of sugars and chlorogenic acid, the increase in the amylase activity, and the appearance of the novel isoform. Low O2 totally suppressed the induction of invertase mRNA and increased the capacity of the alternative oxidase. It did not, however, prevent the decrease in cytochrome capacity; neither did it affect the activity of starch phosphorylase isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号