首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为了探讨入侵植物土荆芥(Chenopodium ambrosioides L.)化感作用如何干扰受体植物的防御功能,以蚕豆(Vicia faba L.)为受体,研究了土荆芥挥发油及其主要成分ρ-对伞花素和α-萜品烯对根边缘细胞活性及其胞外诱捕网厚度的影响,并测定了细胞内信号分子活性氧(Reactive oxygen species, ROS)和NO水平的变化。结果表明:在土荆芥挥发油、ρ-对伞花素和α-萜品烯作用下,蚕豆根边缘细胞粘胶层厚度增加,细胞活性下降,而ROS和NO水平升高,且表现为浓度依赖效应,细胞死亡率、ROS水平和NO水平三者之间存在着显著的正相关(P<0.05)。ROS清除剂抗坏血酸(AsA)、硝酸还原酶抑制剂(NaN3)和泛Caspase抑制剂Z-VAD-FMK均可有效缓解挥发性物质的细胞致死效应,表明ROS和NO诱导根边缘细胞发生了Caspase依赖性细胞凋亡。上述结果表明土荆芥挥发性化感物质诱导蚕豆根边缘细胞内NO和ROS的水平上升,二者协同作用导致细胞凋亡,引起受体防御功能障碍,从而抑制了植物根系的生长。  相似文献   

2.
植物盐胁迫应答蛋白质组学分析   总被引:3,自引:0,他引:3  
张恒  郑宝江  宋保华  王思宁  戴绍军 《生态学报》2011,31(22):6936-6946
土壤盐渍化是限制植物生长和分布的关键因素之一,揭示植物盐胁迫应答的分子机理是借助分子生物学手段提高植物耐盐性的基础.近年来,人们利用高通量蛋白质组学技术分析了拟南芥、水稻等19种植物的盐胁迫应答蛋白质表达图谱.从植物类群(盐生植物和甜土植物)、组织器官(根、地上部分/茎、胚根和胚轴、叶片、花序和配子体)、细胞(悬浮培养细胞、愈伤组织细胞和单细胞生物)和亚细胞结构(叶绿体、质膜和质外体)几方面整合分析了植物盐胁迫应答蛋白质组表达模式特征,主要特征包括:(1)盐生植物通过全面调节细胞骨架重塑、离子转运和区隔化、渗透平衡、活性氧(ROS)清除、信号转导、光合作用和能量代谢等信号与代谢网络体系,获得相对较高的抗/耐盐能力;(2)植物地上部分(叶片、茎、配子体)或光合组织细胞(悬浮培养细胞、愈伤组织细胞和单细胞盐藻)通过调节参与光合作用、碳和能量代谢、ROS清除过程蛋白质的表达模式应对盐胁迫环境;(3)植物地下部分(根、胚根)通过调控信号转导和离子转运相关蛋白质感知/传递盐胁迫信号并维持离子平衡;(4)花序中参与渗透调节、转录调控、蛋白质加工和ROS清除的蛋白质在盐胁迫条件下变化显著;(5)叶绿体通过调控参与光合作用、蛋白质加工和周转,以及氧化还原系统平衡等过程应对盐胁迫;(6)质外体中参与细胞壁代谢、胁迫防御和信号转导过程的蛋白质受盐胁迫影响明显;(7)细胞膜中参与维持膜结构稳定、物质/离子运输和信号转导过程的蛋白质对植物盐胁迫应答具有重要作用.这些分析为深入研究植物耐盐的分子机制提供了重要信息.  相似文献   

3.
以津优35号黄瓜为材料,采用根尖悬空气培养的方法,研究了紫茎泽兰提取物对黄瓜根边缘细胞的化感胁迫,以及外源NO缓解化感胁迫的效应.结果表明: 1000 mg·L-1紫茎泽兰提取物对黄瓜根尖有明显的伤害作用,根尖组织结构被破坏,根尖表层细胞脱落,细胞排列混乱且疏松;这些伤害能够被外源NO有效缓解.与对照相比,紫茎泽兰提取物处理黄瓜幼苗根尖根边缘细胞(RBC)的数量和细胞活率被显著抑制,分别降低54.5%和97.2%,细胞凋亡率升高12.3倍,RBC的黏胶层厚度增加31.4%,根边缘细胞根冠果胶甲基酯酶(PME)活性显著增加.与紫茎泽兰提取物处理相比,提取物胁迫下添加外源NO处理的RBC数量和细胞活率分别增加72.4%和146.0%,细胞凋亡率和RBC黏胶层厚度分别降低30.7%和15.0%,PME活性在处理72 h时降低了14.3%.紫茎泽兰提取物对黄瓜RBC产生细胞毒性,诱导细胞发生凋亡和死亡,破坏RBC对根尖的保护,提取物进一步对根尖产生胁迫伤害,破坏根尖的组织结构.外源NO可以在一定程度上缓解提取物对黄瓜根尖及RBC的化感胁迫伤害.  相似文献   

4.
近年来,一些研究发现氢气作为一种新的信号分子参与植物抗胁迫网络并具有重要作用。本文综述了近年来氢气参与植物胁迫应答的研究,总结氢气主要通过调节活性氧(ROS)来参与植物抵御胁迫的过程。在植物抗干旱过程中,氢气通过促进ROS的产生来调节气孔的闭合;而在植物抗盐渍、金属离子和农药损伤过程中,氢气通过去除ROS来修复氧化损伤;氢气还对植物抗病虫害相关基因的表达有调节作用。  相似文献   

5.
镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展   总被引:4,自引:0,他引:4  
土壤重金属污染引发了一系列严峻的环境问题.其中,镉(Cd)是生物毒性最强的重金属元素之一.活性氧(ROS)过量积累引起的氧化胁迫,是Cd毒害植物的主要原因之一.本文围绕Cd胁迫引起的ROS积累及清除过程,重点阐述介导上述过程的一些信号调控物质包括一氧化氮(NO)、钙(Ca)、植物激素如生长素(IAA)和脱落酸(ABA)等及有丝分裂原活化蛋白激酶(MAPKs)的变化及其在缓解Cd诱导的氧化胁迫中的作用,以期为今后植物抗Cd胁迫生理生化机制的研究提供一定的理论依据.  相似文献   

6.
植物根边缘细胞的抗逆性研究进展   总被引:1,自引:0,他引:1  
李荣峰  蔡妙珍  刘鹏  梁和  徐根娣   《广西植物》2007,27(3):497-502
综述了近几年来国内外有关植物根边缘细胞抗逆性方面的研究,重点概述植物根边缘细胞对生物与非生物胁迫的响应及其相应的抗性机理。在生物胁迫下,边缘细胞能吸引和固定病原根结线虫,排斥或约束致病性细菌,可作为真菌感染的假目标,减少或避免各种病原菌对根尖的伤害。在非生物胁迫下,边缘细胞通过分泌粘液、诱导ROS产生刺激细胞死亡以抵抗铝毒,并通过其数量的改变来调节高温、高浓度CO2等多种生理反应。最后在当前植物根边缘细胞研究的基础上,提出了今后的研究方向。  相似文献   

7.
【背景】亚硝酸盐是虾类集约化养殖过程中最常见的毒性污染物之一,研究亚硝酸盐胁迫对罗氏沼虾血细胞的毒性以及抗氧化酶在抗胁迫防御中的作用,能够为罗氏沼虾养殖过程中的亚硝酸盐中毒防治提供理论参考。【方法】以不同浓度(0、1、5和10 mg·L~(-1))的亚硝态氮(NO_2~--N)对罗氏沼虾进行胁迫,于胁迫后的0、6、12、24和48 h取样,应用流式细胞术检测血细胞活性氧(ROS)含量和细胞凋亡率,同时测定血细胞总数(THC)和胞内抗氧化酶活力。【结果】1 mg·L~(-1)NO_2~--N在48 h内对血细胞ROS含量、凋亡率和THC均无显著影响。5 mg·L~(-1)NO_2~--N胁迫24 h,血细胞ROS含量显著上升,THC显著下降,胁迫48 h凋亡率显著提高。10 mg·L~(-1)NO_2~--N胁迫6 h,血细胞ROS含量和凋亡率均显著上升,胁迫12 h THC显著下降。血细胞的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx)的活力均不同程度地被NO_2~--N胁迫所诱导,CAT活力主要在胁迫前期提高,而GPx活力在胁迫后期提高。【结论与意义】亚硝酸盐存在浓度和时间毒性效应,一定浓度的亚硝酸盐会诱导虾血细胞产生ROS,这些ROS的过量产生诱导了血细胞发生凋亡,继而导致THC下降,这一氧化胁迫过程可能是亚硝酸盐对罗氏沼虾产生细胞毒性的重要机制之一。抗氧化酶活力的诱导表明抗氧化酶在亚硝酸盐胁迫过程中发挥防御作用。  相似文献   

8.
王梦龙  骆素微  李晓诗  彭小群 《广西植物》2023,43(11):2159-2169
植物在生长发育过程中会受到各种胁迫因子的影响,非生物胁迫是其中极其重要的一类。类受体激酶(receptor-like kinases, RLKs)是植物中广泛存在的一类蛋白,能够快速有效地对胁迫因子作出响应,最终引起一系列生物效应。凝集素类受体激酶(lectin receptor-like kinases, LecRLKs)是RLKs的一个亚族,其具有细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域三个结构域。根据细胞外凝集素结构域的不同可分为L、G和C三种不同类型。近年来,大量的研究表明植物凝集素类受体激酶在非生物胁迫响应中发挥重要作用。LecRLKs通过识别非生物胁迫相关的信号分子,激活下游的信号通路,如MAPK通路、ROS通路、钙信号通路等,调节基因表达和蛋白质翻译以增强植物的抗逆性。该文概述了植物凝集素类受体激酶的结构特征及其分类,并系统综述了LecRLKs在盐胁迫、低温胁迫、干旱胁迫、机械损伤和植物激素等非生物胁迫响应中的功能和作用机制,同时也对LecRLKs的未来研究方向作出了展望。该文不仅为深入了解植物凝集素类受体激酶参与非生物胁迫响应的功能提供了参考,而且为利用LecRLKs进行作物抗逆育种改良提供了理论依据。  相似文献   

9.
光氧化胁迫条件下叶绿体中活性氧的产生、清除及防御   总被引:2,自引:0,他引:2  
活性氧(ROS)具有双重作用,高浓度引起细胞损伤,低浓度起保护作用。在光氧化胁迫条件下,光合作用高能态的反应与O2丰富供应使叶绿体成为活性氧丰富的来源。当ROS的积累超过抗氧化剂防护系统清除能力,叶绿体及细胞不可逆的光氧化损伤就会出现。而高等植物的质粒是半自主的细胞器,有它们自己的基因组学及转录、翻译机制来控制ROS生成、保护光合作用机构免受光氧化损伤。因此,本文就光氧化胁迫期间,叶绿体中ROS的乍成、功能与防护机制进行了综述。  相似文献   

10.
氧化胁迫在阿尔茨海默症(AD)的发病过程中起重要作用.花青素是一种广泛存在于植物中的黄酮类物质.实验结果表明,100 μmol/L 的花青素可以有效地缓解AD模型细胞氧化胁迫,具体表现为,降低AD模型细胞的H2O2易感性,减少胞内ROS和[NO]i.c-Jun氨基端激酶(JNK)是氧化胁迫导致细胞损伤的重要信号途径.实验结果显示花青素可以有效地抑制氧化胁迫对JNK的激活.提示花青素的抗氧化胁迫作用与JNK信号途径有关.因此,花青素可以作为一种氧化胁迫因子的清除剂来保护AD模型细胞,有望用于AD的辅助治疗.  相似文献   

11.
Allelopathy is defined as mechanism of plant-plant, plant-microorganisms, plant-virus, plant-insect, and plant-soil-plant interactions mediated by plant- or microorganism-produced chemicals released to the environment. The majority of allelochemicals are secondary metabolites and among others belong to terpenoids, phenolic compounds, organic cyanides and longchain fatty acids. The action of allelochemicals in target plant is diverse and affects a large number of biochemical reactions resulting in modifications of different physiological functions. Thus the results of allelochemical action can be detected at different levels of plant organization: molecular, structural, biochemical, physiological and ecological. Enzyme activities, cell division and ultrastructure, membrane permeability, ion uptake and as a consequence plant growth and development are modified by allelochemicals. Significant effects on photosynthesis and respiration are the best-characterized results of allelopathic interactions. Moreover allelopathic compounds seem to induce a secondary oxidative stress expressed as enhanced free radical production and induction of cellular antioxidant system. Plant survival under allelopathy stress conditions depends on plant defense leading to allelochemical detoxication, the process which may go on in parallel to cell defense reaction to oxidative stress. The article presents some aspects of the current knowledge regarding mechanisms of the allelopathy phenomenon. The allelopathy is a complex problem, thus comprehensive understanding of allelochemical mode of action requires further investigation and still remains an open question.  相似文献   

12.
Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period.  相似文献   

13.
Plants can interact with other plants through the release of chemical compounds or allelochemicals. These compounds released by donor plants influence germination, growth, development, and establishment of receptor plants; having an important role on the pattern of vegetation, i.e as invasive strategy, and on crop productivity. This phytotoxic or negative effect of the released allelochemicals (allelochemical stress) is caused by modifying or altering diverse metabolic processes, having many molecular targets in the receptor plants. Recently, using an aggressive and allelopathic plant Sicyos deppei as the donor plant, and Lycopersicon esculentum as the receptor plant, we showed that the allelochemicals released by S. deppei caused oxidative damage through an increase in reactive oxygen species (ROS) and activation or modification of antioxidant enzymes. Based on this study, we proposed that oxidative stress is one of the mechanisms, among others, by which an allelopathic plant causes phytotoxicity to other plants.Key Words: allelochemical stress, Sicyos deppei, Lycopersicon esculentum, plant allelochemicals, phytotoxicity, ROS, lipid peroxidationIt is well known that plants interact with many organisms, including co-habitation with other plants. Among these relations are the ones referred to as allelochemical interactions. Allelopathy can be defined as a mechanism of interference in plant growth and development mediated by the addition of plant-produced secondary products (allelochemicals) to the soil rhizosphere. Allelochemicals are present in all types of plants and tissues and are released into the soil rhizosphere by a variety of mechanisms, including decomposition of residues, volatilization, and root exudation.13 These released allelochemicals become stressful only when they are toxic or when they affect the growth and development of surrounding plants (phytotoxicity). Studies on allelochemical stress have been expanding; recently the phenomenon has taken on increased importance, since it can help explain plant growth inhibition in interspecies interactions and in structuring the plant community. It appears to be one mechanism or strategy used by invasive plants to become successful and replace other native ones.46On the other hand, the chemical diversity of the organic compounds that mediate these allelochemical interactions is as diverse as their modes of action. Many studies have shown that allelochemicals interfere with several physiological processes in the receptor organism.3,7,8 The physiological effects on receptor plants or other organisms are useful in determining the role of the allelochemicals in the system. Recently, it has been proposed that allelochemicals can cause oxidative stress in target plants and therefore activate the antioxidant mechanism.3,812 In particular; our studies have been focused on knowing the physiological targets of the phytotoxic compounds released by a noxious and endemic weed Sicyos deppei G. Don (Cucurbitaceae). We have taken as the model the receptor or damaged plant Lycopersicon esculentum Mill (Solanaceae), since in Mexican crop-fields, it is common to find both plants. We have observed the strong allelopathic potential of S. deppei and are exploring the potential metabolic target that could be involved in the strong phytotoxic effect of this weed.1316 We recently documented the oxidative damage that an aqueous leachate of S. deppei caused in the target plant L. esculentum.16 In this work we explored in seeds and in primary roots the antioxidant mechanism of tomato to determine whether or not the inhibitory effect of S. deppei was due to oxidative damage. We analyzed the activity and expression of some antioxidant enzymes involved in the detoxification of ROS, and found an imbalance in its activity as well as an increase in the levels of H2O2 at 24 h of treatment. Additional studies on the levels of ROS, including hydrogen peroxide, were monitored in primary roots from germinating seeds under allelochemical stress by imaging the ROS-sensitive fluorescent dye dichlorofluorescein (H2DCFDA, carboxy-2′, 7′-diclhlorofluorescein diacetate) in a confocal microscope (BIORAD 1024, 488 nm dichroic and 510–560 nm emission). DCFDA fluorescence increases as the dye is oxidized by ROS to dichlorofluorescein (DCF). Figure 1 shows a marked increase in fluorescence at 48 h and 72 h of treatment (Fig. 1A–C) compared with the same treatment at 24 h, and with the corresponding control. This fluorescence was more evident at the root cap and at the zone of root hairs in treated seeds.Open in a separate windowFigure 1Allelochemical stress caused by S. deppei elicits ROS generation in tomato germinating seeds. Panels show control (left) and treatment (right) at 24 h (A), 48 h (B), and 72 h (C). Lower panels show higher magnification (40X) of the corresponding time. Seedlings with primary roots were stained for 10–15 minutes with 25 µM DCFDA in distilled water.Clearly, allelochemical stress caused by S. deppei is producing an oxidative imbalance as evidenced by generation of ROS and alteration of activity of antioxidant enzymes. Another result that supports this observation is the high level of lipid peroxidation that we observed at 48 and 72 h, which correlates with the inhibition of two membrane-associated enzymes, H+-ATPase15 and NADPH oxidase.16 We believe, however, that the oxidative damage we observed is not solely responsible for the phytotoxic effect of S. deppei on tomato growth. In other words, we suggest that its inhibitory effect represents the sum of many metabolic processes affected at different times. Currently we are studying the dynamics of carbohydrate mobilization, cell wall loosing of the endosperm to allow the protrusion of the radicle, and ABA content. Preliminary results have shown that there is a delay in expression of some enzyme activities and a high content of ABA.  相似文献   

14.
Biotic and abiotic stress conditions produce reactive oxygen species (ROS) in plants causing oxidative stress damage. At the same time, ROS have additional signaling roles in plant adaptation to the stress. It is not known how the two seemingly contrasting functional roles of ROS between oxidative damage to the cell and signaling for stress protection are balanced. Research suggests that the plant growth regulator auxin may be the connecting link regulating the level of ROS and directing its role in oxidative damage or signaling in plants under stress. The objective of this review is to highlight some of the recent research on how auxin’s role is intertwined to that of ROS, more specifically H2O2, in plant adaptation to oxidative stress conditions.  相似文献   

15.
The aim of this study was to analyse the effect of allelochemical stress on Lycopersicon esculentum growth. Our results showed that allelochemical stress caused by Sicyos deppei aqueous leachate inhibited root growth but not germination, and produced an imbalance in the oxidative status of cells in both ungerminated seeds and in primary roots. We observed changes in activity of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR) and the plasma membrane NADPH oxidase, as well as in the levels of H(2)O(2) and O(2) (*-) in seeds at 12 and 24 h, and in primary roots at 48 and 72 h of treatment, which could account for the oxidative imbalance. There were changes in levels of expression of the mentioned enzymes, but without a correlation with their respective activities. Higher levels of membrane lipid peroxidation were observed in primary roots at 48 and 72 h of treatment. No effect on the expression of metacaspase and the PR1 was observed as indicators of cell death or induction of plant defence. This paper contributes to the understanding of plant-plant interactions through the phytotoxic allelochemicals released in an aqueous leachate of the weed S. deppei, which cause a negative effect on other plants.  相似文献   

16.
Buckwheat (Fagopyrum esculentum Moench) is an important annual plant cultivated for grain or as a cover crop in many countries, and it is also used for weed suppression in agro-economic systems through its release of allelochemicals. Little is known, however, concerning the mode of action of allelochemicals or plant defence response against them. Here, microarrays revealed 94, 85, and 28 genes with significantly higher expression after 6 h of exposure to the allelochemicals fagomine, gallic acid, and rutin, respectively, compared with controls. These induced genes fell into different functional categories, mainly: interaction with the environment; subcellular localization; protein with binding function or cofactor requirement; cell rescue; defence and virulence; and metabolism. Consistent with these results, plant response to allelochemicals was similar to that for pathogens (biotic stress) or herbicides (abiotic stress), which increase the concentration of reactive oxygen species (ROS; with consequent oxidative stress) in plant cells. The data indicate that allelochemicals might have relevant functions, at least in part, in the cross-talk between biotic and abiotic stress signalling because they generate ROS, which has been proposed as a key shared process between these two stress mechanisms.  相似文献   

17.
BACKGROUND AND AIMS: Determining the mode of action of allelochemicals is one of the challenging aspects in allelopathic studies. Recently, allelochemicals have been proposed to cause oxidative stress in target tissue and induce an antioxidant mechanism. alpha-Pinene, one of the common monoterpenoids emitted from several aromatic plants including forest trees, is known for its growth-inhibitory activity. However, its mechanism of action remains unexplored. The aim of the present study was to determine the inhibitory effect of alpha-pinene on root growth and generation of reactive oxygen species, as indicators of oxidative stress and changes in activities of antioxidant enzymes. METHODS: Effects of alpha-pinene on early root growth were studied in five test species, Cassia occidentalis, Amaranthus viridis, Triticum aestivum, Pisum sativum and Cicer arietinum. Electrolyte leakage, lipid peroxidation, hydrogen peroxide generation, proline accumulation, and activities of the enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT) and glutathione reductase (GR) were studied in roots of C. occidentalis. KEY RESULTS: alpha-Pinene inhibited the radicle growth of all the test species. Exposure of C. occidentalis roots to alpha-pinene enhanced solute leakage, and increased levels of malondialdehyde, proline and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. Activities of the antioxidant enzymes SOD, CAT, GPX, APX and GR were significantly elevated, thereby indicating the enhanced generation of reactive oxygen species (ROS) upon alpha-pinene exposure. Increased levels of scavenging enzymes indicates their induction as a secondary defence mechanism in response to alpha-pinene. CONCLUSIONS: It is concluded that alpha-pinene inhibits early root growth and causes oxidative damage in root tissue through enhanced generation of ROS, as indicated by increased lipid peroxidation, disruption of membrane integrity and elevated antioxidant enzyme levels.  相似文献   

18.
Phytol, isolated from Aster yomena, is widely distributed as a constituent of chlorophyll. In the present study, we confirmed the antibacterial activity of phytol and its mechanism inducing oxidative cell death in Pseudomonas aeruginosa. In phytol-treated cells, elevated level of intracellular reactive oxygen species (ROS) and transient NADH depletion were observed. These results demonstrated that phytol induced ROS accumulation and that the electron transport chain was involved in increase of ROS. Due to this ROS generation, the imbalance developed between intracellular ROS and the antioxidant defense system, leading to decrease of reduced glutathione (GSH). Moreover, severe DNA damage was shown after treatment with phytol. DNA electrophoresis and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were conducted with pretreatment with the antioxidant N-acetylcysteine (NAC) to evaluate the cause of DNA damage. In NAC-pretreated cells, alleviated damage was confirmed and it supports that phytol induces oxidative stress-mediated DNA damage. In conclusion, phytol exerts the antibacterial property via inducing oxidative stress response in P. aeruginosa.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号