首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications.

Scope of review

This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed.

Major conclusions

Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy.

General significance

Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds.  相似文献   

2.
3.

Background

Selenoprotein synthesis requires the reinterpretation of a UGA stop codon as one that encodes selenocysteine (Sec), a process that requires a set of dedicated translation factors. Among the mammalian selenoproteins, Selenoprotein P (SELENOP) is unique as it contains a selenocysteine-rich domain that requires multiple Sec incorporation events.

Scope of review

In this review we elaborate on new data and current models that provide insight into how SELENOP is made.

Major conclusions

SELENOP synthesis requires a specific set of factors and conditions.

General significance

As the key protein required for proper selenium distribution, SELENOP stands out as a lynchpin selenoprotein that is essential for male fertility, proper neurologic function and selenium metabolism.  相似文献   

4.

Background

Earthworms are widely used in basic and applied research in medicine, food, environment and agriculture, in which for instance earthworm protease has its own biochemical features.

Scope of review

This review summarizes earthworm protease biochemical features in anti-thrombosis and anti-fibrosis, and provides new perspectives for earthworm to be used in biochemical and pharmaceutical studies.

Major conclusions

Earthworm protease functions in anti-thrombosis by its fibrinolytic activity and inhibiting platelets aggregation, and anti-fibrosis by its decreasing fibronectin, collagen and laminin, showing a broad substrate specificity. The protease regulators (U3EE) from earthworm also has multiple functions acting as an activator and an inhibitor on different target proteins. Nonetheless, the protease improves the substrate selectivity through substrate-induced changes in the protease active site conformation impact on subsequent reactions with substrates.

General significance

It is predictable that both biochemical and applied studies of earthworm proteins including protease will be wider and deeper in the future.  相似文献   

5.

Background

Heterodimeric phospholipase A2 from venom glands of Tunisian scorpion Scorpio maurus (Sm-PLGV) had been purified. It contains long and short chains linked by a disulfide bridge. Sm-PLGV exhibits hemolytic activity towards human erythrocytes and interacts with phospholipid monolayers at high surface pressure. The investigation of structure-function relationships should provide new clues to understand its activity.

Methods

Molecular cloning of Sm-PLGV and heterologous expression in Escherichia coli of three recombinant forms was used to determine the role of the short chain on enzymatic activity. Infrared spectroscopy assisted 3D model building of the three recombinant constructs (phospholipases with and without the penta-peptide and Long chain only) allowed us to propose an explanation of the differences in specific activities and their interaction with various phospholipids.

Results

Nucleotide sequence of Sm-PLGV encodes 129 residues corresponding to the Long chain, the penta-peptide and the short chain. Although recombinant phospholipases without and with the penta-peptide have different specific activities, they display a similar substrate specificity on various phospholipid monolayers and similar bell-shaped activity profiles with maxima at high surface pressure. The absence of the short chain reduces significantly enzymatic and hemolytic activities. The 3D models pointed to an interaction of the short chain with the catalytic residues, what might explain the difference in activities of our constructs.

Conclusion

Infrared spectroscopy data and 3D modeling confirm the experimental findings that highlight the importance of the short chain for the Sm-PLGV activity.

General significance

New informations are given to further establish the structure-function relationships of the Sm-PLGV.  相似文献   

6.

Background

The functions of autism-associated Neuroligins (Nlgs) are modulated by their post-translational modifications, such as proteolytic cleavage. A previous study has shown that there are different endogenous forms of DNlg3 in Drosophila, indicating it may undergo proteolytic processing. However, the molecular mechanism underlying DNlg3 proteolytic processing is unknown. Here, we report a novel proteolytic mechanism that is essential for DNlg3 maturation and function in the nervous system.

Methods

Molecular cloning, cell culture, immunohistochemistry, western blotting and genetic studies were employed to map the DNlg3 cleavage region, identify the protease and characterize the cleavage manner. Behavior analysis, immunohistochemistry and genetic manipulations were employed to study the functions of different DNlg3 forms in the nervous system and neuromuscular junction (NMJs).

Results

Tumor necrosis factor α-converting enzyme (TACE) cleaved DNlg3 exclusively at its extracellular acetylcholinesterase-like domain to generate the N-terminal fragment and the short membrane-anchored fragment (sDNlg3). DNlg3 was constitutively processed in an activity-independent manner. Interestingly, DNlg3 was cleaved intracellularly in the Golgi apparatus before it arrived at the cell surface, a unique cleavage mechanism that is distinct from ‘conventional’ ectodomain shedding of membrane proteins, including rodent Nlg1. Genetic studies showed that sDNlg3 was essential for maintaining proper locomotor activity in Drosophila.

Conclusions

Our results revealed a unique cleavage mechanism of DNlg3 and a neuron-specific role for DNlg3 maturation which is important in locomotor activity.

General significance

Our study provides a new insight into a cleavage mechanism of Nlgs maturation in the nervous system.  相似文献   

7.

Background

High levels of blood cholesterol are conventionally linked to an increased risk of developing cardiovascular disease (Grundy, 1986). Here we examine the molecular mode of action of natural products with known cholesterol-lowering activity, such as for example the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys.

Methods

Molecular Dynamics simulations are used to gain insight into the formation process of mixed micelles and, correspondingly, how active agents epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys could possibly interfere with it.

Results

Self-assembly of physiological micelles occurs on the order of 35–50?ns; most of the structural properties of mixed micelles are unaffected by epigallocatechin gallate or Ile-Ile-Ala-Glu-Lys which integrate into the micellar surface; the diffusive motion of constituting lipids palmitoyl-oleoyl-phosphatidylcholine and cholesterol is significantly down-regulated by both epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys;

Conclusions

The molecular mode of action of natural compounds epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys is a significant down-regulation of the diffusive motion of micellar lipids.

General significance

Natural compounds like the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys, lead to a significant down-regulation of the diffusive motion of micellar lipids thereby modulating cholesterol absorption into physiological micelles.  相似文献   

8.

Background

CDK6 is considered as a highly validated anticancer drug target due to its essential role in regulating cell cycle progression at G1 restriction point. Activation of CDK6 requires the phosphorylation of Thr177 on A-loop, but the structural insights of the activation mechanism remain unclear.

Methods

Herein, all-atoms molecular dynamics (MD) simulations were used to study the effects of Thr177 phosphorylation on the dynamic structure of CDK6-Vcyclin complex.

Results

MD results indicated that the free energy barrier of the transition from open to closed state decreased ~ 47.2% after Thr177 phosphorylation. Key steps along the state transition process were obtained from a cluster analysis. Binding preference of ten different inhibitors to open or closed state were also investigated through molecular docking along with MD simulations methods.

Conclusions

Our results indicated that Thr177 phosphorylation increased the flexibility around the ATP-binding pocket. The transition of the ATP-binding pocket between open and closed states should be considered for understanding the binding of CDK6 inhibitors.

General significance

This work could deepen the understanding of CDKs activation mechanism, and provide useful information for the discovery of new CDKs inhibitors with high affinity and specificity.  相似文献   

9.

Background

It has been almost three decades since the removal of oxidized proteins by the free 20S catalytic unit of the proteasome (20SPT) was proposed. Since then, experimental evidence suggesting a physiological role of proteolysis mediated by the free 20SPT has being gathered.

Scope of review

Experimental data that favors the hypothesis of free 20SPT as playing a role in proteolysis are critically reviewed.

Major conclusions

Protein degradation by the proteasome may proceed through multiple proteasome complexes with different requirements though the unequivocal role of the free 20SPT in cellular proteolysis towards native or oxidized proteins remains to be demonstrated.

General significance

The biological significance of proteolysis mediated by the free 20SPT has been elusive since its discovery. The present review critically analyzes the available experimental data supporting the proteolytic role of the free or single capped 20SPT.  相似文献   

10.

Background

Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is currently investigated as an important target to extend lifespan and health span. Age-related NAD+ depletion due to the accumulation of oxidative stress is associated with reduced energy production, impaired DNA repair and genomic instability.

Scope of review

NAD+ levels can be elevated therapeutically using NAD+ precursors or through lifestyle modifications including exercise and caloric restriction. However, high amounts of NAD+ may be detrimental in cancer progression and may have deleterious immunogenic roles.

Major conclusions

Standardized quantitation of NAD+ and related metabolites may therefore represent an important component of NAD+ therapy.

General significance

Quantitation of NAD+ may serve dual roles not only as an ageing biomarker, but also as a diagnostic tool for the prevention of malignant disorders.  相似文献   

11.
12.

Background

Nucleic acids are now important targets for therapeutic intervention. Alkaloids are an important class of molecules that have myriad therapeutic utility. Isoquinoline and benzophenanthridine alkaloids exhibit multiple pharmacological activities which are often related to their strong nucleic acid binding abilities. Therefore, a review of their interaction aspects with varying nucleic acid structures is essential for rational design and development as therapeutic agents.

Scope of the review

This work reviews the interaction of various therapeutically important isoquinoline and benzophenanthridine alkaloids with nucleic acids. The review lends insights into the molecular aspects of the interaction that is critical from the perspective of designing better therapeutics.

Major conclusions

This review provides a concise report on the recent developments and advancements on the interaction of various alkaloids with natural and synthetic nucleic acids. The review focuses on the mode, mechanism, specificity, conformational aspects and energetics of the interaction that will be helpful in the design and synthesis nucleic acid targeted alkaloid analogs.

General significance

The molecular aspects of the interaction presented here will benefit the development of effective drugs for many diseases. The fundamental results discussed in this review can serve as a database for the design and development of futuristic nucleic acid based small molecule therapeutics.  相似文献   

13.

Background

Receptor dependent clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles into cells. During CME, the ligand-receptor interactions, development of clathrin-coated pit (CCP) and membrane evolution all act together to drive the internalization of bioparticles. In this work, we develop a stochastic computational model to investigate the CME based on the Metropolis Monte Carlo simulations.

Methods

The model is based on the combination of a stochastic particle binding model with a membrane model. The energetic costs of membrane bending, CCP formation and ligand-receptor interactions are systematically linked together.

Results

We implement our model to investigate the effects of particle size, ligand density and membrane stiffness on the overall process of CME from the drug delivery perspectives. Consistent with some experiments, our results show that the intermediate particle size and ligand density favor the particle internalization. Moreover, our results show that it is easier for a particle to enter a cell with softer membrane.

Conclusions

The model presented here is able to provide mechanistic insights into CME and can be readily modified to include other important factors, such as actins. The predictions from the model will aid in the therapeutic design of intracellular/transcellular drug delivery and antiviral interventions.  相似文献   

14.

Background

Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation.

Methods

PolyP was quantified by 4′,6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization.

Results

PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation.

Conclusion

PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix.

General significance

PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.  相似文献   

15.

Background

Sambucus ebulus is a rich source of ribosome-inactivating proteins (RIPs) and RIP-related lectins generated from multiple genes. These proteins differ in their structure, enzymatic activity and sugar binding specificity.

Methods

We have purified and characterized ebulin-RP from S. ebulus leaves and determined the amino acid sequence by cDNA cloning. Cytotoxicity was studied in a variety of cancer cells and a comparative study of the ability of ebulin-RP to bind sugars using “in vitro” and “in silico” approaches was performed.

Results

Ebulin-RP is a novel heterodimeric type 2 RIP present in S. ebulus leaves together with the type 2 RIP ebulin l, which displayed rRNA N-glycosidase activity but unlike ebulin l, lacked functional sugar binding domains. As a consequence of changes in its B-chain, ebulin-RP displayed lower cytotoxicity than ebulin l towards cancer cells and induced apoptosis as the predominant pattern of cell death.

Conclusions

Ebulin-RP is a novel member of the ebulin gene family with low cytotoxicity as a result of deficient sugar binding domains. Type 2 RIP genes from Sambucus have evolved to render proteins with different sugar affinities that may be related to different biological activities and could result in an advantage for the plant.

General significance

The ebulin family of RIPs and lectins can serve as a good model for studying the evolutionary process which may have occurred in RIPs. The lack of cytotoxicity of ebulin-RP makes it a good candidate as a toxic moiety in the construction of immunotoxins and conjugates directed against specific targets.  相似文献   

16.

Background

Lysozyme is a widely distributed enzyme present in a variety of tissue and body fluids. Human and hen egg white lysozyme are used as validated model to study protein folding and stability and to understand protein misfolding and aggregation. We recently found that ceftriaxone, a β-lactam antibiotic able to overcome the blood-brain barrier, successfully eliminated the cellular toxic effects of misfolded proteins as Glial Fibrillary Acidic Protein (GFAP) and α-synuclein. To further understand the anti-amyloidogenic properties of ceftriaxone, we studied its activity towards lysozyme aggregation with the aim to investigate a possible chaperone-like activity of this molecule.

Methods

Here we present the results obtained from fluorescence and synchrotron radiation circular dichroism spectroscopies and from molecular docking and molecular dynamics about the lysozyme-ceftriaxone interaction at neutral and acidic pH values.

Results

We found that ceftriaxone exhibits comparable affinity constants to lysozyme in both experimental pH conditions and that its addition enhanced lysozyme stability reducing its aggregation propensity in acidic conditions. Computational methods allowed the identification of the putative binding site of ceftriaxone, thus rationalizing the spectroscopic results.

Conclusions

Spectroscopy data and molecular dynamics indicated a protective effect of ceftriaxone on pathological aggregation phenomena suggesting a chaperone-like effect of this molecule on protein folding.General significanceThese results, in addition to our previous studies on α-synuclein and GFAP, confirm the property of ceftriaxone to inhibit the pathological protein aggregation of lysozyme also by a chaperone-like mechanism, extending the potential therapeutic application of this molecule to some forms of human hereditary systemic amyloidosis.  相似文献   

17.

Background

EGFP is a fluorescent tag extensively used in biological and biomedical research. Over the years many researches have gathered collections of cell lines bearing specific EGFP-tagged proteins. Despite its popularity some photochemical properties of EGFP remain undocumented and unused. We report on so far unexplored lifetime photoconversion of EGFP usable in FLIM.

Methods

Fluorescence lifetime imaging and spectral FLIM has been used for characterization of the EGFP photoconversion and protein tracking.

Result

Our data suggest that EGFP can be permanently photoconverted to a short-fluorescence-lifetime form (PC-EGFP) by intense blue irradiation. PC-EGFP cannot be reverted back by 405?nm light and exhibits the same spectral emission properties with blue-shifted absorption compared to the unconverted EGFP. Fluorescence of PC-EGFP is pH-independent and the photoconversion efficiency decreases with the solvent viscosity. Utilization of the EGFP photoconversion was demonstrated by tracking of a nucleophosmin mutant in live HEK-293?T cells during its cytoplasm-nuclear relocalization induced by Leptomycin B.

Conclusions

Besides potential FLIM artifacts caused by an unintended EGFP photoconversion, the controlled photoconversion turns EGFP to an excellent tool for kinetic FLIM applications. Since the photoconversion occurs in the lifetime domain, PC-EGFP can be easily distinguished from the unconverted tag by time-resolved detection while all other spectral channels stay free for multicolor labeling.

General significance

The reported lifetime photoconversion lines up EGFP with other photoconvertible fluorescent proteins with special advantage for fluorescence lifetime imaging where lifetime-photoconvertible labels are scarce.  相似文献   

18.

Background

A healthy human can produce over 1?×?1015 blood cells throughout their life. This remarkable amount of biomass requires a concomitantly vast amount of iron to generate functional haemoglobin and functional erythrocytes.

Scope of the review

Erythroblasts form multicellular clusters with macrophages in the foetal liver, bone marrow and spleen termed erythroblastic islands. How the central erythroblastic island macrophage co-ordinates the supply of iron to the developing erythroblasts will be a central focus of this review.

Major conclusion

Despite being studied for over 60?years, the mechanisms by which the erythroblastic island niche serves to control erythroid cell iron metabolism are poorly resolved.

General significance

Over 2 billion people suffer from some form of anaemia. Iron deficiency anaemia is the most prevalent form of anaemia. Therefore, understanding the processes by which iron is trafficked to, and metabolised in developing erythrocytes, is crucially important.  相似文献   

19.

Background

Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization of protein interactions.

Methods

Here, we have used an integrated biochemical-biophysical approach to determine whether S-palmitoylation contributes to the regulation of extracellular vesicle production in skeletal muscle cells.

Results

We ascertained that Alix is S-palmitoylated and that this post-translational modification influences its protein-protein interaction with CD9, a member of the tetraspanin protein family. Furthermore, we showed that the structural organization of the lipid bilayer of the small (nano-sized) extracellular vesicle membrane with altered palmitoylation is qualitatively different compared to mock control vesicles.

Conclusions

We propose that S-palmitoylation regulates the function of Alix in facilitating the interactions among extracellular vesicle-specific regulators and maintains the proper structural organization of exosome-like extracellular vesicle membranes.

General Significance

Beyond its biological relevance, our study also provides the means for a comprehensive structural characterization of EVs.  相似文献   

20.

Background

Malaria is a serious parasitic infection affecting millions of people worldwide each year. Cerebral malaria is the most severe complication of Plasmodium infections, predominantly affecting children. Extracellular vesicles are essential mediators of intercellular communication and include apoptotic bodies, microvesicles and exosomes. Microvesicle numbers increase during disease pathogenesis and inhibition of their release can prevent brain pathology and mortality.

Scope of review

We explore the current knowledge on microvesicles and exosomes in cerebral malaria pathogenesis.

Major conclusions

Microvesicles and exosomes are implicated in cerebral malaria pathogenesis, in the modulation of host immunity to Plasmodium, and in cell-cell communication. Blocking their production is protective in models of cerebral malaria, both in vivo and in vitro.

General significance

While anti-malarial treatments exist to combat Plasmodium infections, increasing drug resistance presents a major challenge. In order to improve diagnosis and treatment outcomes, further research is required to better appreciate extracellular vesicle involvement in cerebral malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号