首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
2.
Tian D  Sun S  Lee JT 《Cell》2010,143(3):390-403
  相似文献   

3.
X inactivation Xplained   总被引:4,自引:0,他引:4  
Random inactivation of one of the two female X chromosomes establishes dosage compensation between XY males and XX females in placental mammals. X inactivation is controlled by the X inactivation center (Xic). Recent advances in genome sequencing show that the Xic has evolved from an ancestral vertebrate gene cluster in placental mammals and has undergone separate rearrangements in marsupials. The Xic ensures that all but one X chromosome per diploid genome are inactivated. Which chromosome remains active is randomly chosen. Pairing of Xic loci on the two X chromosomes and alternate states of the X chromosomes before inactivation have recently been implicated in the mechanism of random choice. Chromosome-wide silencing is then initiated by the noncoding Xist RNA, which evolved with the mammalian Xic and covers the inactive X chromosome.  相似文献   

4.
X-chromosome inactivation in female mammals is controlled by the X-inactivation center (Xic). This locus is required for inactivation in cis and is thought to be involved in the counting process which ensures that only a single X chromosome remains active per diploid cell. The Xist gene maps to the Xic region and has been shown to be essential for inactivation in cis. Transgenesis represents a stringent test for defining the minimal region that can carry out the functions attributed to the Xic. Although YAC and cosmid Xist-containing transgenes have previously been reported to be capable of cis inactivation and counting, the transgenes were all present as multicopy arrays and it was unclear to what extent individual copies are functional. Using two different yeast artificial chromosomes (YACs), we have found that single-copy transgenes, unlike multicopy arrays, can induce neither inactivation in cis nor counting. These results demonstrate that despite their large size and the presence of Xist, the YACs that we have tested lack sequences critical for autonomous function with respect to X inactivation.  相似文献   

5.
Disruption of imprinted X inactivation by parent-of-origin effects at Tsix   总被引:11,自引:0,他引:11  
Lee JT 《Cell》2000,103(1):17-27
In marsupials and in extraembryonic tissues of placental mammals, X inactivation is imprinted to occur on the paternal chromosome. Here, we find that imprinting is controlled by the antisense Xist gene, Tsix. Tsix is maternally expressed and mice carrying a Tsix deletion show normal paternal but impaired maternal transmission. Maternal inheritance occurs infrequently, with surviving progeny showing intrauterine growth retardation and reduced fertility. Transmission ratio distortion results from disrupted imprinting and postimplantation loss of mutant embryos. In contrast to effects in embryonic stem cells, deleting Tsix causes ectopic X inactivation in early male embryos and inactivation of both X chromosomes in female embryos, indicating that X chromosome counting cannot override Tsix imprinting. These results highlight differences between imprinted and random X inactivation but show that Tsix regulates both. We propose that an imprinting center lies within Tsix.  相似文献   

6.
Ramachandran V  Herman PK 《Genetics》2011,189(2):441-454
In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.  相似文献   

7.
Targeted mutagenesis of Tsix leads to nonrandom X inactivation.   总被引:10,自引:0,他引:10  
J T Lee  N Lu 《Cell》1999,99(1):47-57
During X inactivation, mammalian female cells make the selection of one active and one inactive X chromosome. X chromosome choice occurs randomly and results in Xist upregulation on the inactive X. We have hypothesized that the antisense gene, Tsix, controls Xist expression. Here, we create a targeted deletion of Tsix in female and male mouse cells. Despite a deficiency of Tsix RNA, X chromosome counting remains intact: female cells still inactivate one X, while male cells block X inactivation. However, heterozygous female cells show skewed Xist expression and primary nonrandom inactivation of the mutant X. The ability of the mutant X to block Xist accumulation is compromised. We conclude that Tsix regulates Xist in cis and determines X chromosome choice without affecting silencing. Therefore, counting, choice, and silencing are genetically separable. Contrasting effects in XX and XY cells argue that negative and positive factors are involved in choosing active and inactive Xs.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Regulation of imprinted X-chromosome inactivation in mice by Tsix   总被引:11,自引:0,他引:11  
  相似文献   

15.
16.
17.
18.
19.
20.
Tsix silences Xist through modification of chromatin structure   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号