首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mantle cell lymphoma (MCL) is characterized by the translocation t(11;14) (q13;q32), resulting in the overexpression of cyclin-D1. The progression of MCL is an interaction of multitarget and multilink regulation. It has been proven that Bruton’s tyrosine kinase (BTK) is commonly overexpressed in MCL, which makes it a focus of targeted therapy for MCL. Irreversible inhibitors usually have great potency, rapid onset of inhibition and long duration of drug action. Herein, structural modification via an open-loop strategy based on lead compound ibrutinib (IBN) was performed, leading to a series of pyrazole derivatives. Compounds 19c, 19′c, 21c and 21′c showed potent effect in MCL cells with IC50 values lower than 1?μM, and a more than 3-28-fold increase in antiproliferative activity compared with IBN.  相似文献   

2.
Bruton's Tyrosine Kinase (BTK) is a member of the TEC kinase family that is expressed in cells of hematopoietic lineage (e.g., in B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible BTK inhibitor targeting Cys481 within the ATP-binding pocket, for example ibrutinib, has been applied in the treatment of B-cell malignancies. Starting from a fragment hit, we discovered a novel series of potent covalent irreversible BTK inhibitors that occupy selectivity pocket of the active site of the BTK kinase domain. Guided by X-ray structures and a fragment-based drug design (FBDD) approach, we generated molecules showing comparable cellular potency to ibrutinib and higher kinome selectivity against undesirable off-targets like EGFR.  相似文献   

3.
《Translational oncology》2020,13(10):100817
AimThe Bruton's tyrosine kinase (BTK) inhibitor Ibrutinib (PCI-32765) is effective in patients with multiple myeloma, non-Hodgkin lymphoma and chronic lymphoblastic leukemia. We previously showed that primary cells of children with TCF3-PBX1 positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL) express BTK and are sensitive to ibrutinib in vitro. However, preclinical studies in mice are lacking that justify clinical implementation.MethodsImmunocompromised NSG mice were engrafted with a luciferase-positive TCF3-PBX1 leukemic cell line or primary leukemic cells and treated with ibrutinib or placebo. Additionally, primary cells were exposed in vitro to 4 main induction drugs as monotherapy and in combination with ibrutinib.ResultsTreatment with ibrutinib of mice engrafted with a TCF3-PBX1 cell line, TCF3-PBX1 positive or TCF3-PBX1 negative primary leukemic cells did not result in prolonged life span compared to placebo treated mice. In vitro sensitivity to ibrutinib was unaltered in leukemic cells obtained from engrafted mice compared to the original material. However, ibrutinib treatment did not affect leukemic cell viability and tumor outgrowth, nor could lymphocytosis be detected. Ibrutinib was biologically active, since hCD19+ cells harvested from ibrutinib treated mice had no detectable levels of phospho-BTK at tyrosine 223 (pBTK Y223), whereas pBTK Y223 was still detectable in placebo treated cases. In combination tests, we noticed an antagonistic effect of ibrutinib on vincristine sensitivity, which was not observed for prednisolone, L-asparaginase and daunorubicin.ConclusionsWe conclude that ibrutinib is not the precision medicine of choice for TCF3-PBX1 positive BCP-ALL.  相似文献   

4.
Bruton’s tyrosine kinase (BTK) is a key regulator of B-cell receptor (BCR) signaling pathway and takes effect in the regulation of B-cell activation, survival, proliferation and differentiation. It has been proved that BTK is commonly overexpressed in mantle cell lymphoma (MCL), which makes it a focus of targeted therapy for MCL. Our studies yielded a novel series of pyrazolopyrimidine derivatives capable of potent inhibition of BTK. Notably, 12a showed higher selectivity against BTK and exhibited robust antiproliferative effects in both mantle cell lymphoma cell lines and primary patient tumor cells. Low micromolar doses of 12a induced strong cell apoptosis in Jeko-1 and Z138 cells.  相似文献   

5.
A new family of diphenylpyrimidine derivatives bearing an amino acid substituent were identified as potent BTK inhibitors. Among them, compound 7b, which features an l-proline substituent, was identified as the strongest BTK inhibitor, with an IC50 of 8.7?nM. Compound 7b also displayed similar activity against B-cell lymphoma cell lines as ibrutinib. Moreover, 7b exhibited low cytotoxic activity against normal PBMC cells. In addition, the acridine orange/ethidium bromide (AO/EB) staining assay, Western blot analysis and flow cytometry analysis also showed its effectiveness in interfering with B-cell lymphoma cell growth. The molecular simulation performance showed that 7b forms additional strong hydrogen bonds with the BTK protein. All these findings provided new clues about the pyrimidine scaffold as an effective BTK inhibitor for the treatment of B-cell lymphoma.  相似文献   

6.
Bruton’s tyrosine kinase (BTK) has emerged as an attractive target related to B-lymphocytes dysfunctions, especially hematologic malignancies and autoimmune diseases. In our study, a series of diphenylaminopyrimidine derivatives bearing dithiocarbamate moieties were designed and synthesized as novel BTK inhibitors for treatment of B-cell lymphoma. Among all these compounds, 30ab (IC50 = 1.15 ± 0.19 nM) displays similar or more potent inhibitory activity against BTK than spebrutinib (IC50 = 2.12 ± 0.32 nM) and FDA approved drug ibrutinib (IC50 = 3.89 ± 0.57 nM), which is attributed to close binding of 30ab with BTK predicted by molecular docking. In particular, 30ab exhibits enhanced anti-proliferative activity against B-lymphoma cell lines at the IC50 concentration of 0.357 ± 0.02 μM (Ramos) and 0.706 ± 0.05 μM (Raji), respectively, almost 10-fold better than ibrutinib and spebrutinib. In addition, 30ab displays stronger selectivity on B-cell lymphoma over other cancer cell lines than spebrutinib. Furthermore, 30ab efficiently blocks BTK downstream pathways and results in apoptosis of cancer cells. In vivo xenograft model evaluation demonstrates the significant efficacy and broad safety margin of 30ab in treatment of B-cell lymphoma. We propose that compound 30ab is a candidate for further study and development based on our current findings.  相似文献   

7.
《MABS-AUSTIN》2013,5(1):31-40
Mantle cell lymphoma (MCL) is a distinct histologic subtype of B cell non-Hodgkins lymphoma (NHL) associated with an aggressive clinical course. Inhibition of the ubiquitin-proteasome pathway modulates survival and proliferation signals in MCL and has shown clinical benefit in this disease. This has provided rationale for exploring combination regimens with B-cell selective immunotherapies such as rituximab. In this study, we examined the effects of combined treatment with bortezomib and rituximab on patient-derived MCL cell lines (Jeko, Mino, SP53) and tumor samples from patients with MCL where we validate reversible proteasome inhibition concurrent with cell cycle arrest and additive induction of apoptosis. When MCL cells were exposed to single agent bortezomib or combination bortezomib/rituximab, caspase dependent and independent apoptosis was observed. Single agent bortezomib or rituximab treatment of Mino and Jeko cell lines and patient samples resulted in decreased levels of nuclear NF-kB complex(es) capable of binding p65 consensus oligonucleotides, and this decrease was enhanced by the combination. Constitutive activation of the AKT pathway was also diminished with bortezomib alone or in combination with rituximab. On the basis of in vitro data demonstrating additive apoptosis and enhanced NF-kB and phosphorylated AKT depletion in MCL with combination bortezomib plus rituximab, a phase II trial of bortezomib-rituximab in patients with relapsed/refractory MCL is underway.  相似文献   

8.
In an attempt to circumvent the intrinsic resistance of mantle cell lymphoma (MCL) cells to apoptosis, we have analyzed their sensitivity to the extrinsic apoptotic signal triggered by TRAIL. We show here that TRAIL can trigger apoptosis in a majority of MCL cell lines and primary cultures, irrespective of receptor levels, Bcl-2 family members, or caspase regulator expression. MCL sensitivity to TRAIL was closely linked to the activity of the NF-kappaB p50 factor and to the consequent expression of cellular FLIP (c-FLIP), which accumulated into the TRAIL-dependent complex in resistant cells. c-FLIP transient knockdown overcame MCL resistance to TRAIL, while NF-kappaB inhibitors differentially modulated TRAIL cytotoxicity. Indeed, bortezomib increased TRAIL cytotoxic effects in sensitive cells, but led to the intracellular accumulation of c-FLIP, impeding full synergistic interaction. In contrast, the IkappaB kinase inhibitor BMS-345541 led to decreased c-FLIP expression and allowed all MCL samples to undergo TRAIL-mediated apoptosis. These results present the combination of TRAIL stimulation and IkappaB kinase inhibition as a new approach to MCL therapy.  相似文献   

9.
Mantle cell lymphoma (MCL) is a distinct histologic subtype of B cell non-Hodgkins lymphoma (NHL) associated with an aggressive clinical course. Inhibition of the ubiquitin-proteasome pathway modulates survival and proliferation signals in MCL and has shown clinical benefit in this disease. This has provided rationale for exploring combination regimens with B-cell selective immunotherapies such as rituximab. In this study, we examined the effects of combined treatment with bortezomib and rituximab on patient-derived MCL cell lines (Jeko, Mino, SP53) and tumor samples from patients with MCL where we validate reversible proteasome inhibition concurrent with cell cycle arrest and additive induction of apoptosis. When MCL cells were exposed to single agent bortezomib or combination bortezomib/rituximab, caspase dependent and independent apoptosis was observed. Single agent bortezomib or rituximab treatment of Mino and Jeko cell lines and patient samples resulted in decreased levels of nuclear NFκB complex(es) capable of binding p65 consensus oligonucleotides, and this decrease was enhanced by the combination. Constitutive activation of the Akt pathway was also diminished with bortezomib alone or in combination with rituximab. On the basis of in vitro data demonstrating additive apoptosis and enhanced NFκB and phosphorylated Akt depletion in MCL with combination bortezomib plus rituximab, a phase II trial of bortezomib-rituximab in patients with relapsed/refractory MCL is underway.Key words: mantle cell lymphoma, proteasome inhibition, CD20, survival and death pathways, apoptosis  相似文献   

10.
BackgroundMyricetin (MYR) is a polyhydroxy flavone originally isolated from Myrica rubra, and is widely distributed in a variety of medicinal plants and delicious food. MYR has been proven to have inhibitory effects against various types of cancer. However, the exact role of MYR in lymphoma development is still unclear.MethodsIn vitro, the MTT assay was performed to evaluate the activity of human diffuse large B lymphoma cell TMD-8 and other tumor cells. Homogeneous time-resolved fluorescence (HTRF) and molecular docking were used to detect the target of MYR inhibiting TMD-8 cells. In addition, flow cytometry, Annexin V-FITC/PI assays, Hoechst 33258, and mondansylcadaverine (MDC) fluorescent standing were used to detect the cell cycle, apoptosis, and autophagy, respectively. Moreover, Western blot analysis was conducted to analyze related signaling pathways. In TMD-8 cell xenotransplanted mice, immunohistochemistry, histopathology, and blood biochemical tests were used to evaluate the effectiveness and safety of oral administration of MYR.ResultsHere, we found that MYR is more sensitive to TMD-8 cells than other tumor cells by targeting bruton tyrosine kinase (BTK). BTK is an attractive target for the treatment of B-cell malignancies. The HTRF assay showed that MYR inhibited BTK kinase with an IC50 of 1.82 μM. Furthermore, the HTRF assay and Western blot analysis demonstrated that MYR could bind to key residues (Ala478, Leu408, Thr474) in the BTK active pocket, inhibit the autophosphorylation on tyrosine 223, and block BTK/ERK and BTK/AKT signal transduction cascades (including downstream substrates GSK-3β, IKK, STAT3, and NF-κb). The results of cell cycle, apoptosis, and autophagy showed that MYR could induce G1/G0 cycle arrest by regulating cyclinB1/D1 expression, induce apoptosis by increasing the Bax/Bcl-2 ratio, and trigger autophagy by inhibiting mTOR activation. In vivo, oral administration of MYR significantly inhibited the growth of TMD-8 xenograft tumora without toxic side effects. Furthermore, Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis showed that MYR could inhibit proliferation and induce apoptosis of tissue lymphoma cells.ConclusionTaken together, MYR is an oral available natural BTK inhibitor that effectively inhibits the growth of lymphoma TMD-8 cells both in vitro and in vivo. In addition, our findings support that the use of MYR is a novel and promising therapeutic strategy for the treatment of lymphoma.  相似文献   

11.
12.
STAT5A is a molecular regulator of proliferation, differentiation, and apoptosis in lymphohematopoietic cells. Here we show that STAT5A can serve as a functional substrate of Bruton's tyrosine kinase (BTK). Purified recombinant BTK was capable of directly binding purified recombinant STAT5A with high affinity (K(d) = 44 nm), as determined by surface plasmon resonance using a BIAcore biosensor system. BTK was also capable of tyrosine-phosphorylating ectopically expressed recombinant STAT5A on Tyr(694) both in vitro and in vivo in a Janus kinase 3-independent fashion. BTK phosphorylated the Y665F, Y668F, and Y682F,Y683F mutants but not the Y694F mutant of STAT5A. STAT5A mutations in the Src homology 2 (SH2) and SH3 domains did not alter the BTK-mediated tyrosine phosphorylation. Recombinant BTK proteins with mutant pleckstrin homology, SH2, or SH3 domains were capable of phosphorylating STAT5A, whereas recombinant BTK proteins with SH1/kinase domain mutations were not. In pull-down experiments, only full-length BTK and its SH1/kinase domain (but not the pleckstrin homology, SH2, or SH3 domains) were capable of binding STAT5A. Ectopically expressed BTK kinase domain was capable of tyrosine-phosphorylating STAT5A both in vitro and in vivo. BTK-mediated tyrosine phosphorylation of ectopically expressed wild type (but not Tyr(694) mutant) STAT5A enhanced its DNA binding activity. In BTK-competent chicken B cells, anti-IgM-stimulated tyrosine phosphorylation of STAT5 protein was prevented by pretreatment with the BTK inhibitor LFM-A13 but not by pretreatment with the JAK3 inhibitor HI-P131. B cell antigen receptor ligation resulted in enhanced tyrosine phosphorylation of STAT5 in BTK-deficient chicken B cells reconstituted with wild type human BTK but not in BTK-deficient chicken B cells reconstituted with kinase-inactive mutant BTK. Similarly, anti-IgM stimulation resulted in enhanced tyrosine phosphorylation of STAT5A in BTK-competent B cells from wild type mice but not in BTK-deficient B cells from XID mice. In contrast to B cells from XID mice, B cells from JAK3 knockout mice showed a normal STAT5A phosphorylation response to anti-IgM stimulation. These findings provide unprecedented experimental evidence that BTK plays a nonredundant and pivotal role in B cell antigen receptor-mediated STAT5A activation in B cells.  相似文献   

13.
BackgroundBruton's tyrosine kinase (BTK) is a key component of the B-cell receptor (BCR) pathway and a clinically validated target for small molecule inhibitors such as ibrutinib in the treatment of B-cell malignancies. Tirabrutinib (GS-4059/ONO-4059) is a selective, once daily, oral BTK inhibitor with clinical activity against many relapsed/refractory B-cell malignancies.MethodsCovalent binding of tirabrutinib to BTK Cys-481 was assessed by LC-MSMS analysis of BTK using compound as a variable modification search parameter. Inhibition potency of tirabrutinib, ibrutinib, acalabrutinib, and spebrutinib against BTK and related kinases was studied in a dose-dependent manner either after a fixed incubation time (as used in conventional IC50 studies) or following a time course where inactivation kinetics were measured.ResultsTirabrutinib irreversibly and covalently binds to BTK Cys-481. The inactivation efficiency kinact/Ki was measured and used to calculate selectivity among different kinases for each of the four inhibitors studied. Tirabrutinib showed a kinact/Ki value of 2.4 ± 0.6 × 104 M−1 s−1 for BTK with selectivity against important off-targets.ConclusionsFor the BTK inhibitors tested in this study, analysis of the inactivation kinetics yielded a more accurate measurement of potency and selectivity than conventional single-time point inhibition measurements. Subtle but clear differences were identified between clinically tested BTK inhibitors which may translate into differentiated clinical efficacy and safety.General significanceThis is the first study that offers a detailed side-by-side comparison of four clinically-relevant BTK inhibitors with respect to their inactivation of BTK and related kinases.  相似文献   

14.
Multiple Myeloma (MM) is a haematologic malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Over the last 10–15 y the introduction of the proteasome-inhibitor bortezomib has improved MM prognosis, however relapse due to bortezomib-resistance is inevitable and the disease, at present, remains incurable. To model bortezomib-resistant MM we generated bortezomib-resistant MM cell lines (n = 4 ) and utilised primary malignant plasma cells from patients relapsing after bortezomib treatment (n = 6 ). We identified enhanced Bruton''s tyrosine kinase (BTK) activity in bortezomib-resistant MM cells and found that inhibition of BTK, either pharmacologically with ibrutinib (0.5 μM) or via lenti-viral miRNA-targeted BTK interference, re-sensitized previously bortezomib-resistant MM cells to further bortezomib therapy at a physiologically relevant concentration (5 nM). Further analysis of pro-survival signaling revealed a role for the NF-κB p65 subunit in MM bortezomib-resistance, thus a combination of BTK and NF-κB p65 inhibition, either pharmacologically or via further lenti-viral miRNA NF-κB p65 interference, also restored sensitivity to bortezomib, significantly reducing cell viability (37.5 ± 6 .9 %, ANOVA P ≤ 0 .001). Accordingly, we propose the clinical evaluation of a bortezomib/ibrutinib combination therapy, including in patients resistant to single-agent bortezomib.  相似文献   

15.
One of the hallmarks of aging is the progressive accumulation of senescent cells in organisms, which has been proposed to be a contributing factor to age‐dependent organ dysfunction. We recently reported that Bruton's tyrosine kinase (BTK) is an upstream component of the p53 responses to DNA damage. BTK binds to and phosphorylates p53 and MDM2, which results in increased p53 activity. Consistent with this, blocking BTK impairs p53‐induced senescence. This suggests that sustained BTK inhibition could have an effect on organismal aging by reducing the presence of senescent cells in tissues. Here, we show that ibrutinib, a clinically approved covalent inhibitor of BTK, prolonged the maximum lifespan of a Zmpste24?/? progeroid mice, which also showed a reduction in general age‐related fitness loss. Importantly, we found that certain brain functions were preserved, as seen by reduced anxiety‐like behaviour and better long‐term spatial memory. This was concomitant to a decrease in the expression of specific markers of senescence in the brain, which confirms a lower accumulation of senescent cells after BTK inhibition. Our data show that blocking BTK has a modest increase in lifespan in Zmpste24?/? mice and protects them from a decline in brain performance. This suggests that specific inhibitors could be used in humans to treat progeroid syndromes and prevent the age‐related degeneration of organs such as the brain.  相似文献   

16.
Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIPL and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib.  相似文献   

17.
The chromatin modifier EZH2 is overexpressed and associated with inferior outcome in mantle cell lymphoma (MCL). Recently, we demonstrated preferential DNA methylation of HOX genes in MCL compared with chronic lymphocytic leukemia (CLL), despite these genes not being expressed in either entity. Since EZH2 has been shown to regulate HOX gene expression, to gain further insight into its possible role in differential silencing of HOX genes in MCL vs. CLL, we performed detailed epigenetic characterization using representative cell lines and primary samples. We observed significant overexpression of EZH2 in MCL vs. CLL. Chromatin immune precipitation (ChIP) assays revealed that EZH2 catalyzed repressive H3 lysine 27 trimethylation (H3K27me3), which was sufficient to silence HOX genes in CLL, whereas in MCL H3K27me3 is accompanied by DNA methylation for a more stable repression. More importantly, hypermethylation of the HOX genes in MCL resulted from EZH2 overexpression and subsequent recruitment of the DNA methylation machinery onto HOX gene promoters. The importance of EZH2 upregulation in this process was further underscored by siRNA transfection and EZH2 inhibitor experiments. Altogether, these observations implicate EZH2 in the long-term silencing of HOX genes in MCL, and allude to its potential as a therapeutic target with clinical impact.  相似文献   

18.
Aberrant activation of B cell receptor (BCR) signal transduction cascade contributes to the propagation and maintenance of B cell malignancies. The discovery of mall molecules with high potency and selectivity against Bruton’s tyrosine kinase (BTK), a key signaling molecule in this cascade, is particularly urgent in modern treatment regimens. Herein, a series of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives were reported as potent BTK inhibitors. Compounds 17 and 18 displayed strong BTK inhibitory activities in the enzymatic inhibition assay, with the IC50 values of 1.2 and 0.8 nM, respectively, which were comparable to that of ibrutinib (IC50 = 0.6 nM). Additionally, compound 17 had a more selective profile over EGFR than ibrutinib. According to the putative binding poses, the molecular basis of this series of compounds with respect to potency against BTK and selectivity over EGFR was elucidated. In further experiments at cellular level, compounds 17 and 18 significantly inhibited the proliferation of Ramos and TMD8 cells. And they arrested 75.4% and 75.2% of TMD8 cells in G1 phase, respectively, at the concentration of 1 µM.  相似文献   

19.
Since the approval of ibrutinib for the treatment of B-cell malignancies in 2012, numerous clinical trials have been reported using covalent inhibitors to target Bruton’s tyrosine kinase (BTK) for oncology indications. However, a formidable challenge for the pharmaceutical industry has been the identification of reversible, selective, potent molecules for inhibition of BTK. Herein, we report application of Tethering-fragment-based screens to identify low molecular weight fragments which were further optimized to improve on-target potency and ADME properties leading to the discovery of reversible, selective, potent BTK inhibitors suitable for pre-clinical proof-of-concept studies.  相似文献   

20.
In a systematic effort to design potent inhibitors of the anti-apoptotic tyrosine kinase BTK (Bruton's tyrosine kinase) as anti-leukemic agents with apoptosis-promoting and chemosensitizing properties, we have constructed a three-dimensional homology model of the BTK kinase domain. Our modeling studies revealed a distinct rectangular binding pocket near the hinge region of the BTK kinase domain with Leu460, Tyr476, Arg525, and Asp539 residues occupying the corners of the rectangle. The dimensions of this rectangle are approximately 18 x 8 x 9 x 17 A, and the thickness of the pocket is approximately 7 A. Advanced docking procedures were employed for the rational design of leflunomide metabolite (LFM) analogs with a high likelihood to bind favorably to the catalytic site within the kinase domain of BTK. The lead compound LFM-A13, for which we calculated a Ki value of 1.4 microM, inhibited human BTK in vitro with an IC50 value of 17.2 +/- 0.8 microM. Similarly, LFM-A13 inhibited recombinant BTK expressed in a baculovirus expression vector system with an IC50 value of 2.5 microM. The energetically favorable position of LFM-A13 in the binding pocket is such that its aromatic ring is close to Tyr476, and its substituent group is sandwiched between residues Arg525 and Asp539. In addition, LFM-A13 is capable of favorable hydrogen bonding interactions with BTK via Asp539 and Arg525 residues. Besides its remarkable potency in BTK kinase assays, LFM-A13 was also discovered to be a highly specific inhibitor of BTK. Even at concentrations as high as 100 micrograms/ml (approximately 278 microM), this novel inhibitor did not affect the enzymatic activity of other protein tyrosine kinases, including JAK1, JAK3, HCK, epidermal growth factor receptor kinase, and insulin receptor kinase. In accordance with the anti-apoptotic function of BTK, treatment of BTK+ B-lineage leukemic cells with LFM-A13 enhanced their sensitivity to ceramide- or vincristine-induced apoptosis. To our knowledge, LFM-A13 is the first BTK-specific tyrosine kinase inhibitor and the first anti-leukemic agent targeting BTK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号