首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hagiwara T  Hidaka Y  Yamada M 《Biochemistry》2005,44(15):5827-5834
Interplay of various covalent modifications of histone tails has an essential role in regulation of chromatin function. Peptidylarginine deiminase (PADI) 4 deiminates protein arginine to citrulline in a Ca(2+)-dependent manner and is present in the nucleus of granulocyte-differentiated HL-60 cells. When these cells are treated with the calcium ionophore A23187, core histone deimination occurs. To determine the deimination sites of histones, histone species were purified by reverse-phase high-performance liquid chromatography (RP-HPLC) from the cells. Immunoblotting using antimodified citrulline antibody indicated that histones H2A, H3, and H4 but not H2B were deiminated. H2A and H4 were digested with Staphylococcus aureus V8 protease, and the digests were separated by RP-HPLC. Immuno dot-blotting and mass spectrometry showed that the deiminated residues were present in H2A (1-56) and H4 (1-52) regions but not in other regions. The H2A peptide (1-56) was digested with alpha-chymotrypsin, and the deiminated peptide was separated from the corresponding nondeiminated peptide by RP-HPLC. The deiminated residue was found to be limited to residues 1-23. Similarly, digestion of the H4 peptide (1-52) with endoproteinase Asp-N and separation of the deiminated peptide from the nondeiminated peptide indicated that the deiminated residue was limited to residues 1-23. Mass spectrometry of lysylendopeptidase digests of the H2A (1-23) and H4 (1-23) peptides showed that deimination occurred at arginine 3 of the N-terminal sequence Ac-SGRGK common to H2A and H4. These results suggest that PADI4 deiminates only a restricted site of target proteins in cells. Deimination of histones is discussed in relation to chromatin structure and function.  相似文献   

2.
The degree of post-translational enzymatic deimination (conversion of arginyl to citrullinyl residues) of myelin basic protein (MBP) is correlated with the severity of the human autoimmune disease multiple sclerosis (MS). It is difficult to obtain large quantities of deiminated MBP from natural sources (autopsy material), and in vitro deimination using peptidylarginine deiminase (EC 3.5.3.15) is both non-specific and irreproducible. Since there is no known codon for citrulline, we have constructed a mutant form of recombinant murine MBP (rmMBP) in which 5 Arg and 1 Lys residues have been replaced by Gln as the most reasonable analogue of Cit. The residues were chosen to correspond to the 6 Arg residues in human MBP which are most commonly deiminated in chronic MS. The mutant species, rmMBP-qCit(6) where the "q" represents "quasi-," was probed by numerous biochemical and biophysical techniques. Highly homogeneous protein preparations were obtained using a modified expression system which minimised spurious misincorporation of Lys for Arg, as ascertained by electrospray ionisation mass spectrometry. The mutant form rmMBP-qCit(6) had a reduced ability to aggregate lipid vesicles, a slightly greater susceptibility to digestion by cathepsin D, a greater proportion of random secondary structure, and different conformational responses to lipids, compared with the unmodified rmMBP. Overall, the mutant protein's properties were consistent with the effects of deimination and support its use as a model for evaluating the effects of this modification.  相似文献   

3.
Deimination of myelin basic protein (MBP) has been implicated in the chemical pathogenesis of multiple sclerosis (MS). Degradation of bovine MBP by cathepsin D, a myelin-associated protease, was increased when 6 arginyl residues were deiminated and became very rapid when all 18 arginyl residues were deiminated. Since MBP contains a number of modifications, including methylation, phosphorylation, etc., we studied the effect of methylation, an irreversible modification, to determine how this modification affected deimination. Methylation of Arg 106 in bovine MBP (Arg 107 in human), a naturally occurring modification of MBP, has been shown to affect the deimination of arginyl residues in the present study. Since fractionation of MBP into unmethylated, monomethylated, and dimethylated species cannot be done readily on a preparative scale, mass spectrometry with the Q-TOF instrument resolved these species readily since each differed from the other by 14 atomic mass units (amu). Examination of five different hMBP samples, two from normal brain and three from MS brain, revealed that increased deimination of arginyl residues correlated with a decreased methylation of Arg 107 (human sequence). To study this process in vitro, bovine MBP (bMBP) was used. Component 1 (C-1) is the most cationic of the MBP "charge isomers" and the most unmodified, in which all arginyl residues are intact. It was deiminated to various extents with purified bovine brain peptidylarginine deiminase, generating a number of species containing 0-13.7 mol of citrulline/mol of bMBP. Mass spectrometry of each of these species permitted us to determine the influence of methylation of Arg 106 (bovine sequence) on deimination by this enzyme. We found that bMBP with unmethylated arginine was deiminated at a rate of 0.081 mol of citrulline/min, with monomethylarginine, 0.068 mol of citrulline/min, and with dimethylarginine, 0.036 mol of citrulline/min. We suggest that the methylated arginyl residue becomes sequestered in the hydrophobic beta-sheet structure and disrupts the three-dimensional structure of the protein so that other arginyl residues are less accessible to peptidylarginine deiminase.  相似文献   

4.
5.
6.
7.
Peptidylarginine deiminases (PADs) convert arginine residues in proteins into citrulline residues Ca(2+)-dependently. PAD V was recently found in granulocyte-differentiated HL-60 cells. To find a target of PAD V, we incubated HL-60 granulocytes with the calcium ionophore A23187 and studied deiminated proteins by immunocytochemistry and immunoblotting using a monospecific antibody to modified citrulline residues. Immunocytochemical signals were found in the nucleus upon incubation with A23187. Immunoblotting indicated that 40-, 18-, 17-, and 14-kDa proteins were preferentially deiminated. The 40-kDa protein, which was focused to pI 5.0 on two-dimensional gel electrophoresis, was identified as nucleophosmin/B23 by mass spectrometry. The 18-, 17-, and 14-kDa proteins extracted with 0.4 N H(2)SO(4) comigrated with histones H3, H2A, and H4, respectively, on two-dimensional gel electrophoresis specialized for histones. The citrulline content of histones amounted to about 10% of the histone molecules. We discuss the implications of deimination of these proteins for their nuclear functions.  相似文献   

8.
9.
Electrospray ionization mass spectrometry, a leading method for the quantification of biomolecules, is useful for the analysis of posttranslational modifications of proteins. Here we describe a mass spectrometric approach for determining levels of acetylation at individual lysine residues within the amino-terminal tail of histone H4. Because of the high density of acetylatable lysine residues within this short span of amino acids, collision-induced dissociation tandem mass spectrometry was required. In addition, it was necessary to develop an algorithm to determine the fraction of acetylation at specific lysine residues from fragment ions containing more than one lysine residue. This is the first report of direct measurement of endogeneous levels of acetylation at individual lysine residues within the amino-terminal tail of yeast histone H4 and is the first use of tandem mass spectrometry for quantification of peptides containing multiple sites of modification.  相似文献   

10.
11.
Heterochromatin at yeast telomeres and silent mating (HM) loci represses adjacent genes and is formed by the binding and spreading of silencing information regulators (SIR proteins) along histones. This involves the interaction between the C terminus of SIR3 and the N terminus of histone H4. Since H4 is hypoacetylated in heterochromatin we wished to determine whether acetylation is involved in regulating the contacts between SIR3 and H4. Binding of H4 peptide (residues 1-34) acetylated at lysines Lys-5, Lys-8, Lys-12, and Lys-16 to an immobilized SIR3 protein fragment (residues 510-970) was investigated using surface plasmon resonance. We find that acetylation of H4 lysines reduces binding (K(a)) of H4 to SIR3 in a cumulative manner so that the fully acetylated peptide binding is decreased approximately 50-fold relative to unacetylated peptide. Thus, by affecting SIR3-H4 binding, acetylation may regulate the formation of heterochromatin. These data help explain the hypoacetylated state of histone H4 in heterochromatin of eukaryotes.  相似文献   

12.
A global view of all core histones in yeast is provided by tandem mass spectrometry of intact histones H2A, H2B, H4, and H3. This allowed detailed characterization of >50 distinct histone forms and their semiquantitative assessment in the deletion mutants gcn5Delta, spt7Delta, ahc1Delta, and rtg2Delta, affecting the chromatin remodeling complexes SAGA, SLIK, and ADA. The "top down" mass spectrometry approach detected dramatic decreases in acetylation on H3 and H2B in gcn5Delta cells versus wild type. For H3 in wild type cells, tandem mass spectrometry revealed a direct correlation between increases of Lys(4) trimethylation and the 0, 1, 2, and 3 acetylation states of histone H3. The results show a wide swing from 10 to 80% Lys(4) trimethylation levels on those H3 tails harboring 0 or 3 acetylations, respectively. Reciprocity between these chromatin marks was apparent, since gcn5Delta cells showed a 30% decrease in trimethylation levels on Lys(4) in addition to a decrease of acetylation levels on H3 in bulk chromatin. Deletion of Set1, the Lys(4) methyltransferase, was associated with the linked disappearance of both Lys(4) methylation and Lys(14) and Lys(18) or Lys(23) acetylation on H3. In sum, we have defined the "basis set" of histone forms present in yeast chromatin using a current mass spectrometric approach that both quickly profiles global changes and directly probes the connectivity of modifications on the same histone.  相似文献   

13.
The eukaryotic histone dimers, H3–H4 and H2A–H2B, are formed in the cytosol prior to being transported into the nucleus and assembled into the nucleosome. Residue side-chain distances from the interior of the histone dimers are obtained with an ellipsoidal spatial metric and structural information provided by X-ray analyses at atomic resolution of the nucleosome core particles. While the spatial hydrophobic moment profiles of the dimers are comparable with profiles obtained previously that characterize the hydrophobic core of single-chain, single-domain globular soluble proteins, correlation coefficients between the side-chain hydrophobicities and distances from the interior of the H3–H4 dimer and H2A–H2B dimer differ significantly. This difference is traced to the H3 histone fold, which segregates fewer hydrophobic residues within the protein interior than the three other folds. Examination of the correlation coefficient between residue hydrophobicity and side-chain distance from the dimer interior over local regions of the fold sequence shows that the region of reduced correlation is associated mainly with the residues at the carboxyl end of the H3 histone fold, the helical region of the fold involved in the H3–H3 binding of the (H3–H4)2 tetramer of the nucleosome. Hydrophobic interactions apparently contribute to the binding of this fourfold helical bundle and this evolutionary requirement may trade off against the requirement for H3–H4 dimer stability. The present results provide a different view than previously proposed, albeit of similar origin, to account for the reduced stability of the H3–H4 dimer compared with the H2A–H2B dimer.Reviewing Editor: Dr. Martin Kreitman  相似文献   

14.
15.
Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression.  相似文献   

16.
Acetylation of rat testis histones H2B and TH2B   总被引:3,自引:1,他引:2  
The in vivo acetylation of rat testis histones H3 and H4 has been demonstrated in previous studies. In this study, analysis of purified histone fractions revealed the in vivo acetylation of histone H2B, the testis histone variant designated TH2B, and two or more of the histone H2A variants. These findings are quite significant, because it is possible that all of the core histones are acetylated in elongating spermatids at the time of removal of the entire histone complement for replacement by basic spermatidal transition proteins (S.R. Grimes and N. Henderson, 1983, Arch. Biochem. Biophys. 221, 108-116).  相似文献   

17.
The deimination of the arginine residues in peanut trypsin-chymotrypsin inhibitor B-III caused the disappearance of its trypsin-inhibitory activity. Peanut protease inhibitor B-III was incubated with peptidylarginine deiminase, resulting in the conversion of 2.5 mol of arginine to citrulline and in the loss of its trypsin-inhibitory activity. However, the ability of the deiminated inhibitor to inhibit chymotrypsin was as strong as before. Structural analysis of the deiminated B-III indicated that the P1 arginine residues at both reactive sites, Arg(10) and Arg(38), were completely modified to citrulline by the action of peptidylarginine deiminase, and that the Arg(60) in the C-terminal region of B-III was partially deiminated. These residues seem to be exposed on the surface of the molecule. The P1' arginine residue at the first reactive site, Arg(11), was not deiminated at all.  相似文献   

18.
Poveda A  Sendra R 《The FEBS journal》2008,275(9):2122-2136
Saccharomyces cerevisiae Hat1, together with Hat2 and Hif1, forms the histone acetyltransferase B (HAT-B) complex. Previous studies performed with synthetic N-terminal histone H4 peptides found that whereas the HAT-B complex acetylates only Lys12, recombinant Hat1 is able to modify Lys12 and Lys5. Here we demonstrate that both Lys12 and Lys5 of soluble, non-chromatin-bound histone H4 are in vivo targets of acetylation for the yeast HAT-B enzyme. Moreover, coimmunoprecipitation assays revealed that Lys12/Lys5-acetylated histone H4 is bound to the HAT-B complex in the soluble cell fraction. Both Hat1 and Hat2, but not Hif1, are required for the Lys12/Lys5-specific acetylation and for histone H4 binding. HAT-B-dependent acetylation of histone H4 was detected in the soluble fraction of cells at distinct cell cycle stages, and increased when cells accumulated excess histones. Strikingly, histone H3 was not found in any of the immunoprecipitates obtained with the different components of the HAT-B enzyme, indicating the possibility that histone H3 is not together with histone H4 in this complex. Finally, the exchange of Lys for Arg at position 12 of histone H4 did not interfere with histone H4 association with the complex, but prevented acetylation on Lys5 by the HAT-B enzyme, in vivo as well as in vitro.  相似文献   

19.
Gel electrophoretic analysis of the histone chemical acetylation in the nucleosome core particles with acetic andydride revealed availability of about 14 lysine residues of histone H2A, 15-21 of H2B, 8-11--H3 and 6-9--H4. Moderately lysine-rich histones H2A and H2B were found to be more susceptible to acetylation than arginine-rich H3 and H4. Chemical acetylation enhanced the rate of trypsin digestion in acetylated nucleosomes as evidenced by gel electrophoresis of histone fragments. A more pronounced trypsin digestion was evident at acetylation of only 3-5 histone amino groups per nucleosome. However, even heavily acetylated nucleosomes yielded in familiar trypsin limit digest pattern of histone fragments thus indicating persistence of histone octamer. Nucleosomes which were trace acetylated (up to 3-5 histone amino groups neutralized per nucleosome) and treated with trypsin to remove highly charged terminal histone regions revealed remarkable unfolding and partial dissociation when analyzed by gel electrophoresis. The same trace acetylated nucleosomes did not show such destabilization prior to trypsin digestion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号