首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Individuals with Down syndrome (DS) will inevitably develop Alzheimer disease (AD) neuropathology sometime after middle age, which may be attributable to genes triplicated in individuals with DS. The characteristics of AD neuropathology include neuritic plaques, neurofibrillary tangles, and neuronal loss in various brain regions. The mechanism underlying neurodegeneration in AD and DS remains elusive. Regulator of calcineurin 1 (RCAN1) has been implicated in the pathogenesis of DS. Our data show that RCAN1 expression is elevated in the cortex of DS and AD patients. RCAN1 expression can be activated by the stress hormone dexamethasone. A functional glucocorticoid response element was identified in the RCAN1 isoform 1 (RCAN1-1) promoter region, which is able to mediate the up-regulation of RCAN1 expression. Here we show that overexpression of RCAN1-1 in primary neurons activates caspase-9 and caspase-3 and subsequently induces neuronal apoptosis. Furthermore, we found that the neurotoxicity of RCAN1-1 is inhibited by knock-out of caspase-3 in caspase-3(-/-) neurons. Our study provides a novel mechanism by which RCAN1 functions as a mediator of stress- and Aβ-induced neuronal death, and overexpression of RCAN1 due to an extra copy of the RCAN1 gene on chromosome 21 contributes to AD pathogenesis in DS.  相似文献   

2.
3.
4.
The Down syndrome critical region 1 (DSCR1) gene encodes a regulator of calcineurin 1 (RCAN1), which is overexpressed in the patients with Down syndrome. In this study, we found that the protein expression of RCAN1 was increased by the hydrogen peroxide (H2O2). The increase of RCAN1 expression by H2O2 was blocked by the treatment with anti-oxidants and inhibitors of mitogen-activated protein kinases (MAPKs), indicating that this increase was caused by the generation of reactive oxygen species and activation of MAPKs. In addition, we found that the phosphorylation of RCAN1 by H2O2 caused an increase of RCAN1 expression by increasing of the half-life of the protein. Our results provide the evidence that H2O2 acts as an important regulator in the control of RCAN1 protein expression through phosphorylation.  相似文献   

5.
Regulator of Calcineurin 1 (RCAN1/DSCR1/Adapt78) gene is located in the Down syndrome (DS) region of chromosome 21, and critical for the phenotype of DS and Alzheimer disease (AD). In this report, we found that expression of Nedd4-2 E3 ubiquitin ligase decreased the protein level of RCAN1. Decrease of RCAN1 protein expression by Nedd4-2 was blocked by proteasome inhibitor MG132, indicating that this decrease was mediated by the ubiquitin-proteasome pathway. Furthermore, we found that the ability of Nedd4-2 to degrade RCAN1 depended on the direct binding with RCAN1. Consistently, Nedd4-2 enhanced the ubiquitination of RCAN1 protein. Our data provide the first evidence that Nedd4-2 acts as an important regulatory component in the control of RCAN1 protein stability.  相似文献   

6.
CREB activates proteasomal degradation of DSCR1/RCAN1   总被引:1,自引:0,他引:1  
Seo SR  Chung KC 《FEBS letters》2008,582(13):1889-1893
  相似文献   

7.
RCAN1 (Adapt78) functions mainly, if not exclusively, as a regulator of calcineurin, a phosphatase that mediates many cellular responses to calcium. Identification of this regulatory activity has led to a surge of interest in RCAN1, since calcineurin is involved in many cellular and tissue functions, and its abnormal expression is associated with multiple pathologies. Recent studies have implicated RCAN1 as a regulator of angiogenesis. To more fully investigate the role of RCAN1 in vascular function, we first extended previous studies by assessing RCAN1 response in cultured endothelial cells to various vascular agonists. Strong induction of isoform 4 but not isoform 1 was observed in human umbilical vein- and bovine pulmonary aortic-endothelial cells in response to VEGF, thrombin, and ATP but not other agonists. Inductions were both calcium and calcineurin dependent, with the relative effect of each agonist cell-type dependent. Ectopic RCAN1 expression also inhibited calcineurin signaling in the HUVEC cells. Based on these strong RCAN1 responses and a lack of RCAN1-associated vascular studies beyond angiogenesis, we investigated the potential role of RCAN1 in vascular tone using whole mounted mesenteric artery. RCAN1 knockout mice exhibited an attenuated mesenteric vasoconstriction to phenylephrine as compared with wild-type. Overall contractility was unaffected, suggesting that this component of smooth muscle action is similar in the two mouse strains. Constriction in the knockout artery appeared to be potentiated by the addition of the nitric oxide synthase (NOS) inhibitor l-NAME, suggesting that elevated nitric oxide (NO) production occurs in the knockout vasculature and contributes to the weakened vasoconstriction. Our results reveal a newly identified vascular role for RCAN1, and a potential new target for treating vascular- and calcineurin-related disorders.  相似文献   

8.
RCAN1 (Adapt78) is an endogenous inhibitor of calcineurin, an important intracellular phosphatase that mediates many cellular responses to calcium. RCAN1 is expressed in multiple organs, especially heart, skeletal muscle and brain. In brain, it is thought to be important due to its strong expression, developmental regulation, abundance of target protein (calcineurin), and putative links to multiple brain-related disorders. Surprisingly, however, few studies have examined RCAN1 protein expression here. This has led to some confusion in the field over the exact nature and cell-type expression of isoform 4, the more studied of the two major RCAN1 protein isoforms, in brain. Here we characterize RCAN1 brain isoforms in more detail by assessing their size and distribution under conditions of calcium elevation, a hallmark of the isoform 4 response, and using rodent models to allow for more expanded analyses. We find that the 25-29 kDa version of this protein, reported in many non-brain studies, is indeed also present in neurons, and most observable after calcium induction. We also observe that expression of isoform 4 is not specific to neurons, as both microglia and astrocyte cells in culture exhibit a strong induction of isoform 4 protein following calcium stress that is not observable in non-stressed tissue sections. Isoform 1 expression is also observable in a primary glial cell-type (rat microglia). Finally, our observations confirm previous reports of low or non-detectable constitutive isoform expression in non-stressed glia, and of a larger sized, RCAN1 antibody-interacting species. These studies extend and complement previous studies on RCAN isoforms toward better understanding the role of RCAN1 in brain function and as a potential new target for treating calcineurin-related brain disorders.  相似文献   

9.
10.
Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. In this study, we investigated the functional role of RCAN1 in the reactive oxygen species (ROS)‐mediated neuronal death signaling. We found that RCAN1 was able to protect the cells from H2O2‐induced cytotoxicity. The expression of RCAN1 caused an inhibition of the H2O2‐induced activation of mitogen‐activated protein kinases (MAPKs) and AP‐1. In contrast, RCAN1 significantly enhanced the activity of cAMP response element‐binding protein (CREB). Furthermore, RCAN1 induced the expression of the CREB target gene, Bcl‐2. Consistently, knockdown of endogenous RCAN1 using shRNA down regulated the phosphorylation of CREB and the expression of Bcl‐2, which protects the cells from H2O2‐induced cytotoxicity. Our data provide a new mechanism for the cytoprotective function of RCAN1 in response to oxidant‐induced apoptosis. J. Cell. Biochem. 114: 1115–1123, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Regulator of calcineurin 1 (RCAN1; also referred as DSCR1 or MCIP1) is located in close proximity to a Down syndrome critical region of human chromosome 21. Although RCAN1 is an endogenous inhibitor of calcineurin signaling that controls lymphocyte activation, apoptosis, heart development, skeletal muscle differentiation, and cardiac function, it is not yet clear whether RCAN1 might be involved in other cellular activities. In this study, we explored the extra-functional roles of RCAN1 by searching for novel RCAN1-binding partners. Using a yeast two-hybrid assay, we found that RCAN1 (RCAN1-1S) interacts with histone deacetylase 3 (HDAC3) in mammalian cells. We also demonstrate that HDAC3 deacetylates RCAN1. In addition, HDAC3 increases RCAN1 protein stability by inhibiting its poly-ubiquitination. Furthermore, HDAC3 promotes RCAN1 nuclear translocation. These data suggest that HDAC3, a new binding regulator of RCAN1, affects the protein stability and intracellular localization of RCAN1.  相似文献   

12.
Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RCAN1 (Tg-RCAN1(TG)). We found no difference in fecal corticosterone levels of RCAN1-knockout mice and their wildtype littermates. As expected, we found differences between sexes in fecal corticosterone levels. In addition, we found higher levels of excreted corticosterone in Tg-RCAN1(TG) female mice as compared with female wildtype mice. Our data indicate normal diurnal corticosterone production in RCAN1 mutant mice and do not suggest a causal role in either the cognitive or anxiety phenotypes exhibited by RCAN1-knockout mice.  相似文献   

13.
14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a bioactive peptide with diverse activities in the nervous system. In addition to its more classic role as a neurotransmitter, PACAP functions as a neurotrophic factor. PACAP exerts these activities by binding to PACAP-selective (PAC1) or nonselective (VPAC1, VPAC2) receptors (-R). Glial cells also exhibit PACAP binding, which is associated with the increased proliferation of astrocytes. The present report demonstrates a distinct spatiotemporal regulation of PACAP, PAC1-R, VPAC1-R, and VPAC2-R expression in primary cultured rat astrocytes. To determine the role of PACAP and PAC1-R expression on glial proliferation, two in vivo models were examined--human brain tumors of glial origin and the reactive gliosis induced by a penetrating stab wound to the mature rat brain. Relative to normal human brain, PAC1-R expression is significantly upregulated in glioma, particularly oligodendrogliomas. While similar polymerase chain reaction (PCR) analysis does not detect PACAP expression, in situ hybridization studies reveal PACAP expression in a limited number of cells within the tumor. In sharp contrast, neither PACAP nor PAC1-R expression are upregulated consequent to injury. These results suggest a distinct role for PACAP and PAC1-R in glioma development and nervous system response to injury.  相似文献   

15.
Su Ryeon Seo  Seon Sook Kim 《FEBS letters》2009,583(19):3140-3144
Overexpression of Regulator of Calcineurin 1 (RCAN1/DSCR1/Adapt78) is known to inhibit the calcineurin-NFAT dependent signaling pathway. In this report, we find that activation of adenylate cyclase by forskolin increases the expression of RCAN1 through the increase of the protein’s half-life. The ability of forskolin to increase the accumulation of RCAN1 protein is significantly inhibited with protein kinase A inhibitors such as KT5720 and H-89. Furthermore, forskolin targets the central and C-terminal region of RCAN1 and enhances the inhibitory effect of RCAN1 on the calcineurin-mediated activation of NFAT. Our findings provide the first evidence that the accumulation of the RCAN1 protein by cAMP acts as an important regulatory mechanism in the control of the calcineurin-dependent cellular pathway.

Structured summary

MINT-7262390: PKA (uniprotkb:P22694) phosphorylates (MI:0217) RCAN1 (uniprotkb:P53805) by protein kinase assay (MI:0424)  相似文献   

16.
17.
18.
The chromosome 21 gene RCAN1, encoding a modulator of the calcineurin (CaN) phosphatase, is a candidate gene for contributing to cognitive disability in people with Down syndrome (DS; trisomy 21). To develop a physiologically relevant model for studying the biochemistry of RCAN1 and its contribution to DS, we generated bacterial artificial chromosome-transgenic (BAC-Tg) mouse lines containing the human RCAN1 gene with a C-terminal HA-FLAG epitope tag incorporated by recombineering. The BAC-Tg was expressed at levels only moderately higher than the native Rcan1 gene: approximately 1.5-fold in RCAN1 BAC-Tg1 and twofold in RCAN1 BAC-Tg2. Affinity purification of the RCAN1 protein complex from brains of these mice revealed a core complex of RCAN1 with CaN, glycogen synthase kinase 3-beta (Gsk3b), and calmodulin, with substoichiometric components, including LOC73419. The BAC-Tg mice are fully viable, but long-term synaptic potentiation is impaired in proportion to BAC-Tg dosage in hippocampal brain slices from these mice. RCAN1 can act as a tumor suppressor in some systems, but we found that the RCAN1 BAC-Tg did not reduce mammary cancer growth when present at a low copy number in Tp53;WAP-Cre mice. This work establishes a useful mouse model for investigating the biochemistry and dose-dependent functions of the RCAN1 protein in vivo.  相似文献   

19.
20.
Pituitary adenylate cyclase-activating polypeptides (PACAP) have potent regulatory and neurotrophic activities on superior cervical ganglion (SCG) sympathetic neurons with pharmacological profiles consistent for the PACAP-selective PAC(1) receptor. Multiple PAC(1) receptor isoforms are suggested to determine differential peptide potency and receptor coupling to multiple intracellular signaling pathways. The current studies examined rat SCG PAC(1) receptor splice variant expression and coupling to intracellular signaling pathways mediating PACAP-stimulated peptide release. PAC(1) receptor mRNA was localized in over 90% of SCG neurons, which correlated with the cells expressing receptor protein. The neurons expressed the PAC(1)(short)HOP1 receptor but not VIP/PACAP-nonselective VPAC(1) receptors; low VPAC(2) receptor mRNA levels were restricted to ganglionic nonneuronal cells. PACAP27 and PACAP38 potently and efficaciously stimulated both cAMP and inositol phosphate production; inhibition of phospholipase C augmented PACAP-stimulated cAMP production, but inhibition of adenylyl cyclase did not alter stimulated inositol phosphate production. Phospholipase C inhibition blunted neuron peptide release, suggesting that the phosphatidylinositol pathway was a prominent component of the secretory response. These studies demonstrate preferential sympathetic neuron expression of PACAP-selective receptor variants contributing to regulation of autonomic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号