首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Interaction of the Listeria surface protein InlB with the hepatocyte growth factor receptor Met activates signalling events that trigger bacterial internalization into mammalian epithelial cells. We show here that purified phagosomes containing InlB-coated beads display type II phosphatidylinositol 4-kinase (PI4K) activity. In human epithelial HeLa cells, both PI4KIIalpha and PI4KIIbeta isoforms are corecruited with Met around InlB-coated beads or wild-type Listeria during the early steps of internalization, and phosphatidylinositol 4-phosphate [PI(4)P] is detected at the entry site. We demonstrate that PI4KIIalpha or PI4KIIbeta knockdown, but not type III PI4Kbeta knockdown, inhibits Listeria internalization. Production of PI(4)P derivatives such as phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P(3)] upon InlB stimulation is not affected by PI4KIIalpha or beta knockdown, suggesting that these phosphoinositides are generated by a type III PI4K. Strikingly, knockdown of the PI(4)P ligand and clathrin adaptor AP-1 strongly inhibits bacterial entry. Together, our results reveal a yet non-described role for type II PI4Ks in phagocytosis.  相似文献   

2.
Phosphatidylinositol 4-phosphate (PI4P) regulates biosynthetic membrane traffic at multiple steps and differentially affects the surface delivery of apically and basolaterally destined proteins in polarized cells. Two phosphatidylinositol 4-kinases (PI4Ks) have been localized to the Golgi complex in mammalian cells, type III PI4Kbeta (PI4KIIIbeta) and type II PI4Kalpha (PI4KIIalpha). Here we report that PI4KIIIbeta and PI4KIIalpha localize to discrete subcompartments of the Golgi complex in Madin-Darby canine kidney (MDCK) cells. PI4KIIIbeta was enriched in early Golgi compartments, whereas PI4KIIalpha colocalized with markers of the trans-Golgi network (TGN). To understand the temporal and spatial control of PI4P generation across the Golgi complex, we quantitated the steady state distribution of a fluorescent PI4P-binding domain relative to cis/medial Golgi and TGN markers in transiently transfected MDCK cells. The density of the signal from this PI4P reporter was roughly 2-fold greater in the early Golgi compartments compared with that of the TGN. Furthermore, this ratio could be modulated in vivo by overexpression of catalytically inactive PI4KIIIbeta and PI4KIIalpha or in vitro by the PI4KIIIbeta inhibitor wortmannin. Our data suggest that both PI4KIIIbeta and PI4KIIalpha contribute to the compartmental regulation of PI4P synthesis within the Golgi complex. We discuss our results with respect to the kinetic effects of modulating PI4K activity on polarized biosynthetic traffic in MDCK cells.  相似文献   

3.
Phosphoinositides have a pivotal role as precursors to important second messengers and as bona fide signaling and scaffold targeting molecules. Phosphatidylinositol 4-kinases (PtdIns 4-kinases or PI4Ks) are at the apex of the phosphoinsitide cascade. Sequence analysis revealed that mammalian cells contain two type II PtdIns 4-kinase isoforms, now termed PI4KIIalpha and PI4KIIbeta. PI4KIIalpha was cloned first. It is tightly membrane-associated and behaves as an integral membrane protein. In this study, we cloned PI4KIIbeta and compared the two isoforms by monitoring the distribution of endogenous and overexpressed proteins, their modes of association with membranes, their response to growth factor stimulation or Rac-GTP activation, and their kinetic properties. We find that the two kinases have different properties. PI4KIIbeta is primarily cytosolic, and it associates peripherally with plasma membranes, endoplasmic reticulum, and the Golgi. In contrast, PI4KIIalpha is primarily Golgi-associated. Platelet-derived growth factor promotes PI4KIIbeta recruitment to membrane ruffles. This effect is potentially mediated through Rac; overexpression of the constitutively active RacV12 induces membrane ruffling, increases PI4KIIbeta translocation to the plasma membrane, and stimulates its activity. The dominant-negative RacN17 blocks plasma membrane association and inhibits activity. RacV12 does not boost the catalytic activity of PI4KIIalpha further, probably because it is constitutively membrane-bound and already activated. Membrane recruitment is an important mechanism for PI4KIIbeta activation, because microsome-bound PI4KIIbeta is 16 times more active than cytosolic PI4KIIbeta. Membrane-associated PI4KIIbeta is as active as membrane-associated PI4KIIalpha and has essentially identical kinetic properties. We conclude that PI4KIIalpha and PI4KIIbeta may have partially overlapping, but not identical, functions. PI4KIIbeta is activated strongly by membrane association to stimulate phosphatidylinositol 4,5-bisphosphate synthesis at the plasma membrane. These findings provide new insight into how phosphoinositide cascades are propagated in cells.  相似文献   

4.
The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.  相似文献   

5.
The most abundant and widely expressed mammalian phosphoinositide kinase activity is contributed by phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha). In this study we demonstrate that PI4KIIalpha is a novel GTP-independent target of the wasp venom tetradecapeptide mastoparan and that different mechanisms of activation occur in different subcellular membranes. Following cell membrane fractionation mastoparan specifically stimulated a high activity Golgi/endosomal pool of PI4KIIalpha independently of exogenous guanine nucleotides. Conversely, GTPgammaS stimulated a low activity pool of PI4KIIalpha in a separable dense membrane fraction and this response was further enhanced by mastoparan. Overexpression of PI4KIIalpha increased the basal phosphatidylinositol 4-kinase activity of each membrane pool, as well as the mastoparan-dependent activities, thereby demonstrating that mastoparan specifically activates this isozyme. Both mastoparan and M7, at concentrations known to invoke secretion, stimulated PI4KIIalpha with similar efficacies, resulting in an increase in the apparent V(max) and decrease in K(m) for exogenously added PI. Mastoparan also stimulated PI4KIIalpha immunoprecipitated from the raft fraction, indicating that PI4KIIalpha is a direct target of mastoparan. Finally we reveal a striking dependence of both basal and mastoparan-stimulated PI4KIIalpha activity on endogenous cholesterol concentration and therefore conclude that changes in membrane environment can regulate PI4KIIalpha activity.  相似文献   

6.
A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIalpha (PI4KIIalpha). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIalpha in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIalpha was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIalpha normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIalpha content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIalpha was further explored by PI4KIIalpha knockdown experiments. Reduction of the cellular content of PI4KIIalpha strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIalpha is present on AP-3 organelles where it regulates AP-3 function.  相似文献   

7.
Phosphatidylinositol 4 phosphate (PI4P) is highly enriched in the trans-Golgi network (TGN). Here we establish that PI4P is a key regulator of the recruitment of the GGA clathrin adaptor proteins to the TGN and that PI4P has a novel role in promoting their recognition of the ubiquitin (Ub) sorting signal. Knockdown of PI4KIIalpha by RNA interference (RNAi), which depletes the TGN's PI4P, impaired the recruitment of the GGAs to the TGN. GGAs bind PI4P primarily through their GAT domain, in a region called C-GAT, which also binds Ub but not Arf1. We identified two basic residues in the GAT domain that are essential for PI4P binding in vitro and for the recruitment of GGAs to the TGN in vivo. Unlike wild-type GGA, GGA with mutated GATs failed to rescue the abnormal TGN phenotype of the GGA RNAi-depleted cells. These residues partially overlap with those that bind Ub, and PI4P increased the affinity of the GAT domain for Ub. Because the recruitment of clathrin adaptors and their cargoes to the TGN is mediated through a web of low-affinity interactions, our results show that the dual roles of PI4P can promote specific GGA targeting and cargo recognition at the TGN.  相似文献   

8.
In mammalian cells, three types of phosphatidylinositol 4-kinase (PI4K) are associated with the Golgi complex, where their product, phosphatidylinositol 4-phosphate [PtdIns(4)P], is concentrated. The role of PtdIns(4)P in this compartment and how the PtdIns(4)P-positive membrane domain is formed and maintained despite continuous membrane flow are, however, poorly understood. Recent work has shown that PtdIns(4)P and the small GTPase ARF1 function cooperatively in the recruitment of four-phosphate adaptor proteins (FAPPs) to the trans-Golgi network (TGN) and has implicated FAPPs in formation of the membrane domain and in post-Golgi trafficking.  相似文献   

9.
The PH domains of OSBP and FAPP1 fused to GFP were used to monitor PI(4)P distribution in COS-7 cells during manipulations of PI 4-kinase (PI4K) activities. Both domains were associated with the Golgi and small cytoplasmic vesicles, and a small fraction of OSBP-PH was found at the plasma membrane (PM). Inhibition of type-III PI4Ks with 10 microM wortmannin (Wm) significantly reduced but did not abolish Golgi localization of either PH domains. Downregulation of PI4KIIalpha or PI4KIIIbeta by siRNA reduced the localization of the PH domains to the Golgi and in the former case any remaining Golgi localization was eliminated by Wm treatment. PLC activation by Ca2+ ionophores dissociated the domains from all membranes, but after Ca2+ chelation, they rapidly reassociated with the Golgi, the intracellular vesicles and with the PM. PM association of the domains was significantly higher after the Ca2+ transient and was abolished by Wm pretreatment. PM relocalization was not affected by down-regulation of PI4KIIIbeta or -IIalpha, but was inhibited by down-regulation of PI4KIIIalpha, or by 10 microM PAO, which also inhibits PI4KIIIalpha. Our data suggest that these PH domains detect PI(4)P formation in extra-Golgi compartments under dynamic conditions and that various PI4Ks regulate PI(4)P synthesis in distinct cellular compartments.  相似文献   

10.
The clathrin adaptor complex AP-2 serves to coordinate clathrin-coated pit assembly with the sorting of transmembrane cargo proteins at the plasmalemma. How precisely AP-2 assembly and cargo protein recognition at sites of endocytosis are regulated has remained unclear, but recent evidence implicates phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI[4,5]P2), in these processes. Here we have identified and functionally characterized a conserved binding site for PI(4,5)P2 within mu2-adaptin, the medium chain of the clathrin adaptor complex AP-2. Mutant mu2 lacking a cluster of conserved lysine residues fails to bind PI(4,5)P2 and to compete the recruitment of native clathrin/AP-2 to PI(4,5)P2-containing liposomes or to presynaptic membranes. Moreover, we show that expression of mutant mu2 inhibits receptor-mediated endocytosis in living cells. We suggest that PI(4,5)P2 binding to mu2-adaptin regulates clathrin-mediated endocytosis and thereby may contribute to structurally linking cargo recognition to coat formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号