首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
We constructed a series of cosmid vectors that carry the two cohesive end sites (cos) of lambda phage, arrayed in tandem, which enabled us to clone fragments of genomic DNA of up to 50 kb without a vector background. An equimolar mixture of the left and right vector arms of equal length was prepared from the vector DNA, simply by treating the DNA sequentially with three enzymes, restriction enzyme PvuII, alkaline phosphatase, and restriction enzyme BamHI (or BglII), without purification by agarose gel electrophoresis. After phenol extraction and ethanol precipitation, the equimolar mixture of the vector arms, which carried a single cos oriented from left to right, was directly ligated with insert DNA without further manipulation. We established conditions for cosmid cloning, using two kinds of DNA fragment of 40-50 kb, prepared from mouse L cell genomic DNA, as insert DNAs, namely, three cloned BamHI fragments and Sau3AI fragments, size-selected on a sucrose density gradient. The most important parameters affecting the cloning efficiency were the quality of the insert DNA and the molar ratio of the insert and vector arms. We achieved cloning efficiencies of 3.6 X 10(6)-1.3 X 10(7) colony forming units (cfu)/micrograms of insert DNA and 1.7 X 10(5)-1.0 X 10(6) cfu/micrograms of insert DNA, using the cloned BamHI fragments and the Sau3AI fragments, respectively. We examined more than 5000 clones and found that they all contained insert DNA.  相似文献   

2.
Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria   总被引:238,自引:0,他引:238  
N T Keen  S Tamaki  D Kobayashi  D Trollinger 《Gene》1988,70(1):191-197
Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.  相似文献   

3.
H J Breter  M T Knoop  H Kirchen 《Gene》1987,53(2-3):181-190
A series of vectors for cosmid cloning in yeast has been derived from cosmid pHC79. Vectors pMT4 through pMT6 contain two tandemly arranged cohesive end sites (cos) from the genome of bacteriophage lambda. Their design allows the rapid and simple preparation of cosmid arms by linearizing a vector at the unique PvuII-restriction site located between the two cos-sequences and then cutting the linearized molecule at one of its unique cloning sites for BamHI, ClaI, PvuI, SalI or ScaI. Cosmids generated with arms from the most advanced vector, pMT6, carry the origin of replication (ori) and the ApR gene from pBR322 and the TRP1/ARS1 and URA1 genes from Saccharomyces cerevisiae. A yeast genomic DNA library was established by packaging in vitro, into bacteriophage lambda preheads, of partially restricted yeast DNA fragments ligated to cosmid arms of vector pMT6. About 80% of the clones thus obtained comprise inserts of contiguous genomic DNA over 30 kb in length. Unique DNA probes for the yeast genes CDC10, CDC39, HIS4, LEU2, and PGK1 have successfully been applied when testing for completeness of this library by isolating a series of overlapping cosmid clones that carry the respective genes. The library will thus be useful for the selection of cosmid clones which carry CDC genes from yeast by complementing first, with the vectorial yeast gene URA1, the pyrimidine auxotrophy of most cdc-strains and then, with the respective CDC wild-type genes, of the temperature-sensitive mutant alleles. Most CDC clones thus obtained will provide unique DNA probes which serve as randomly distributed start sequences within the yeast genome for overlap hybridization screening in chromosome mapping studies.  相似文献   

4.
Broad host range vectors derived from an RSF1010::Tn1 plasmid   总被引:2,自引:0,他引:2  
  相似文献   

5.
Host-vector systems have been developed for gene cloning in the metabolically versatile bacterial genus Pseudomonas. They comprise restriction-negative host strains of Pseudomonas aeruginosa and P. putida and new cloning vectors derived from the high-copy-number, broad-host-range plasmid RSF1010, which are stably maintained in a wide range of Gram-negative bacteria. These plasmids contain EcoRI, SstI, HindIII, XmaI, XhoI, SalI, BamHI, and ClaI insertion sites. All cloning sites, except for BamHI and ClaI, are located within antibiotic-resistance genes' insertional inactivation of these genes during hybrid plasmid formation provides a readily scored phenotypic change for the rapid identification of bacterial clones carrying such hybrids. One of the new vector plasmids is a cosmid that may be used for the selective cloning of large DNA fragments by in vitro lambda packaging. An analogous series of vectors that are defective in their plasmid-mobilization function, and that exhibit a degree of biological containment comparable to that of current Escherichia coli vector plasmids, are also described.  相似文献   

6.
Phasmid lambda pMYF131, a hybrid of phage lambda vectors and plasmid pUC19, was constructed. The phasmid and its derivatives were shown to be efficient vectors for construction and analysis of gene libraries in Escherichia coli cells. The lambda pMYF131 DNA molecule contains all the genes and regions essential for phage lytic development. The plasmid cannot be packaged either in the monomeric or the oligomeric form due to its specific length. Elongation of the DNA molecule by ligation with fragments of foreign DNA can make it packageable and this is easily detected by plaque formation. Hence, the procedures used to construct genomic libraries can be simplified by selection of only recombinant DNA molecules just at the time and on the basis of their packaging in vitro. The output of recombinant clones per vector molecule was several times higher for vector lambda pMYF131, compared to phage vector lambda L47.1AB, and attained 3 x 10(6) clones per micrograms DNA. Vector and recombinant phasmids can be obtained in large quantities in plasmid form. lambda pMYF131 contains nine unique restriction sites which allow the cloning of DNA fragments with blunt ends and of fragments with various types of cohesive ends, obtained by digestion with 14 prototype restriction enzymes. The maximal size of the cloned DNA fragments is approx. 20 kb for lambda pMYF131. Phasmid vectors were used to construct libraries of bovine, pig and quail genomes, and genomic libraries of 17 species of bacteria. Application of suitable methods allowed the identification 13 individual genes within these libraries.  相似文献   

7.
G Churchward  D Belin  Y Nagamine 《Gene》1984,31(1-3):165-171
We have constructed a plasmid cloning vector, pGB2, which is derived from the Escherichia coli plasmid pSC101. The plasmid, which specifies resistance to spectinomycin and streptomycin, contains unique restriction sites for the enzymes HindIII, PstI, SalI, BamHI, SmaI and EcoRI. pGB2 shows no sequence homology, as detected by DNA-DNA hybridization, to several widely used vectors such as pBR322, pUC8 and phage lambda L47.1. Amongst other applications, DNA fragments can be cloned into the plasmid and then radioactive plasmid DNA can be used as a probe to screen recombinant DNA libraries.  相似文献   

8.
A method for synthesizing DNA from 40-mer oligonucleotides, which we used to generate a 32-kb DNA fragment, is explained. DNA sequences are synthesized as approximately 500 bp fragments (synthons) in a two-step PCR reaction and cloned using ligation-independent cloning (LIC). Synthons are then assembled into longer full-length sequences in a stepwise manner. By initially synthesizing smaller fragments (synthons), the number of clones sequenced is low compared with synthesizing complete multi-kilobase DNA sequences in a single step. LIC eliminates the need for purification of fragments before cloning, making the process amenable to high-throughput operation and automation. Type IIs restriction enzymes allow seamless assembly of synthons without placing restrictions on the sequence being synthesized. Synthetic fragments are assembled in pairs to generate the final construct using vectors that allow selection of desired clones with two unique antibiotic resistance markers, and this eliminates the need for purification of fragments after digestion with restriction endonucleases.  相似文献   

9.
High efficiency vectors for cosmid microcloning and genomic analysis   总被引:33,自引:0,他引:33  
We describe the construction and use of cosmid vectors designed for microcloning, gene isolation and genomic mapping starting from submicrogram amounts of eukaryotic DNA. These vectors contain (1) multiple cos sites to allow for simple and efficient cloning using non size-selected DNA; (2) bacteriophage T3 and T7 promoter sequences flanking the cloning site to allow for the synthesis of end-specific probes for chromosome walking; (3) a selectable gene for immediate gene transfer of cosmid DNA into mammalian cells; (4) recognition sequences for specific oligodeoxyribonucleotides to allow rapid restriction mapping; (5) unique NotI, SacII or SfiI sites flanking the cloning site to allow for removal of the cloned DNA insert from the vector. These cosmid vectors allow the construction of high quality genomic libraries in situations where the quantity of purified DNA is extremely limited, such as when using DNA prepared from purified mammalian chromosomes isolated by fluorescence-activated cell sorting.  相似文献   

10.
New cosmid vectors developed for eukaryotic DNA cloning   总被引:26,自引:0,他引:26  
A series of ColE1 and pSC101 cosmid vectors have been constructed suitable for cloning large stretches of DNA. All contain a single BamHI site allowing cloning of Sau3A, MboI, BglII, BclI , and BamHI-generated fragments. These vectors have the following characteristics: (i) they are relatively small (1.7-3.4 kb); (ii) the BamHI cloning site is flanked by restriction enzyme sites enabling direct cloning of unfractionated insert DNA without generating multiple insert or vector ligation products [ Ish - Horowitz and Burke, Nucl . Acids Res. 9 (1981) 2989-2998]; (iii) two vectors ( pHSG272 and pHSG274 ) contain a hybrid Tn5 KmR/ G418R gene which is selectable in both prokaryotic and eukaryotic cells, making them suitable for transferring DNA into eukaryotic cells, and (iv) the different prokaryotic selectable markers available in the other vectors described facilitate cosmid rescue of the transferred DNA sequences from the eukaryotic cell: CmR, ApR, KmR, ( pHSG429 ), CmR, ( pHSG439 ), colicin E1 immunity ( pHSG250 ), (v) the cosmid pHSG272 was used successfully to construct a shuttle vector based on the BPVI replicon [ Matthias et al., EMBO J. 2 (1983) 1487-1492].  相似文献   

11.
Q Tao  H B Zhang 《Nucleic acids research》1998,26(21):4901-4909
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) systems were previously developed for cloning of very large eukaryotic DNA fragments in bacteria. We report the feasibility of cloning very large fragments of eukaryotic DNA in bacteria using conventional plasmid-based vectors. One conventional plasmid vector (pGEM11), one conventional binary plasmid vector (pSLJ1711) and one conventional binary cosmid vector (pCLD04541) were investigated using the widely used BAC (pBeloBAC11 and pECBAC1) and BIBAC (BIBAC2) vectors as controls. The plasmid vector pGEM11 yielded clones ranging in insert sizes from 40 to 100 kb, whereas the two binary vectors pCLD04541 and pSLJ1711 yielded clones ranging in insert sizes from 40 to 310 kb. Analysis of the pCLD04541 and pSLJ1711 clones indicated that they had insert sizes and stabilities similar to the BACs and BIBACs. Our findings indicate that conventional plasmid-based vectors are capable of cloning and stably maintaining DNA fragments as large as BACs and PACs in bacteria. These results suggest that many existing plasmid-based vectors, including plant and animal transformation and expression binary vectors, could be directly used for cloning of very large eukaryotic DNA fragments. The pCLD04541 and pSLJ1711 clones were shown to be present at at least 4-5 copies/cell. The high stability of these clones indicates that stability of clones does not seem contingent on single-copy status. The insert sizes and the copy numbers of the pCLD04541 and pSLJ1711 clones indicate that Escherichia coli can stably maintain at least 1200 kb of foreign DNA per cell. These results provide a new conceptual and theoretical basis for development of improved and new vectors for large DNA fragment cloning and transformation. According to this discovery, we have established a system for large DNA fragment cloning in bacteria using the two binary vectors, with which several very large-insert DNA libraries have been developed.  相似文献   

12.
13.
A small cosmid for efficient cloning of large DNA fragments   总被引:290,自引:0,他引:290  
B Hohn  J Collins 《Gene》1980,11(3-4):291-298
The production and use of the 6 kb cosmid pHC79, a derivative of pBR322, is described. It can be used for cloning of fragments cleaved by EcoRI, ClaI, BamHI (also BglII, BclI, Sau3A and MboI), SalI (also XhoI and AvaI), EcaI and PstI. Hybrid cosmids containing inserts in the size range of 40 kb are packaged in vitro and transduced with an efficiency of 5 X 10(4) - 5 X 10(5) clones/microgram of insert DNA. Prefractionation of the DNA fragments to be cloned into 40 kb sized fragments ensures the cloning of contiguous stretches of DNA. Proteins produced in vitro by the cosmid pHC79 are identical to the ones produced by its pBR322 parent.  相似文献   

14.
Rapid and efficient cosmid cloning   总被引:455,自引:81,他引:455       下载免费PDF全文
We present a procedure for cosmid cloning that allows rapid and efficient cloning of individual DNA fragments of between 32kb and 45kb. By appropriate treatment of the cloning vector, pJb8, we make left-hand and right-hand vector ends that are incapable of self-ligation but which accept dephosporylated insert DNA fragments. The inserted fragments are generated by partial digestion with MboI or Sau3A and are dephosphorylated to prevent ligation and insertion of non-contiguous fragments. The method eliminates the need to size the insert DNA fragments and prevents formation of clones containing short or multiple inserts. 1 microgram of target Drosophila DNA gives about 5 x 10(5) clones, with an average insert size of 38kb. We also describe a rapid and efficient method for preparing plasmid and cosmid DNA.  相似文献   

15.
Two libraries, together containing about 10(6) colonies, have been constructed by cloning different size fractions of a partial Sau3A digest of rat genomic DNA in the cosmid vector pTM. Upon screening with two cDNA clones, one containing alpha A2-crystallin and one containing beta B1-crystallin sequences, 14 cosmid clones were isolated which were beta B1-crystallin-specific; none was found which contained alpha A2-crystallin sequences. The inserts of the beta B1 clones, which range from 35 to 45 kb in length, contain overlapping DNA segments covering more than 60 kb of rat genomic DNA. The composite BamHI restriction map of this region shows a single beta B1-crystallin gene, which is interrupted by several intronic sequences. Five recombinants hybridizing with two different rat lens gamma-crystallin cDNA clones were also isolated from these libraries. Four of these contain 31- to 41-kb inserts, whereas the fifth recombinant contains a 12.2-kb insert. Hybridization analysis with 5' and 3'-specific cDNA fragments indicates that altogether these inserts contain six gamma-crystallin genes, three of which are located on one insert of only 31 kb.  相似文献   

16.
17.
Four Pseudomonas spp. capable of utilizing bile acids as sole carbon source were examined for the presence of plasmids. One plasmid was found in Pseudomonas sp. RAL8, but no plasmids could be detected in the other three strains. Mitomycin C curing of RAL8 did not affect the ability of the strain to grow on bile acids. This suggested that the genetic information for bile acid catabolism in all four strains was chromosomally located. To isolate bile acid catabolic genes. DNA from RAL8 was partially digested with Sau3A, then the DNA fragments cloned into the broad-host-range cosmid vector pMMB33. The resulting gene bank was screened by plate-mating with two stable RAL8 mutants. Four of the gene bank clones were found to give a positive complementation with one or both mutants. Examination of the plasmids in the four clones revealed that they were unstable, but detailed mapping enabled a 52 kb restriction map to be derived. Further complementation work showed that two of the bile acid catabolic genes are located close together on the map, and may be contiguous.  相似文献   

18.
Gateway克隆技术已得到广泛的应用。该技术先通过BP反应将目标片段连到带有完整attL特异识别位点的入门载体,然后与终载体通过LR反应得到表达载体。Gateway克隆方法与传统的酶切连接方法相比有快速简单等优点。但是,BP和LR酶都非常昂贵。本研究首先对3个常用Gateway载体的atts特异位点序列比对发现,attL序列核心交换位点“core attL”的21~22 bp长的碱基是保守和必要的。由此,设计含有core-attL序列的引物,通过PCR克隆得到DNA片段并连入pMD18-T载体,然后进行LR反应,可成功得到目标表达载体,并在保守的位点上正确重组。本研究还对其中一个带有绿色荧光蛋白基因的表达载体转化至烟草,能够正常表达该蛋白质。结果表明,通过将含有attL核心位点基因片段连接到pMD18-T载体上,可以省略BP反应而将目标片段连接到终载体上,节约了反应时间和成本。  相似文献   

19.
E Lai  K Wang  N Avdalovic  L Hood 《BioTechniques》1991,11(2):212-4, 216-7
This paper describes a number of techniques for rapid restriction mapping of cosmid clones. First, we have replaced the cloning site of cosmid vector pWE15 with a polylinker containing 15 infrequently cleaved restriction enzyme sites that are placed asymmetrically on each side of the BamHI cloning site. DNA cloned into this vector can be fully recovered by using several pairs of restriction enzymes. Second, we have designed a simple electrical circuit device that allows the performance of asymmetric voltage gradient field inversion gel electrophoresis (AFIGE) to improve the resolution of DNA molecules in the range of 20-50 kbp. AFIGE can be obtained by simply placing the device in between a commercially available switching unit and the gel box in a standard field inversion system. Finally, the restriction digestion procedure has been automated by using a Beckman Biomek 1000 robotic workstation. Using this automated system, 96 restriction reactions, including gel loading, can be performed in less than two hours. In summary, these methods represent at least a tenfold improvement in the speed and/or mapping data that can be obtained in a single gel.  相似文献   

20.
Molecular cloning and physical mapping of murine cytomegalovirus DNA.   总被引:32,自引:27,他引:5       下载免费PDF全文
Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号