首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
Smagulova FO  Morozov IV 《Genetika》2000,36(12):1716-1718
A previously unknown sequence of the human phenylalanine hydroxylase (PAH) gene intron 7 (GeneBank AN AF204239) has been reported. Screening of the group of phenylketonuria patients from Nobosibirsk region for polymorphic sites within intron 7 revealed single nucleotide substitutions at intron positions 332, 451, 574 and 791. Polymorphic site at intron position 791 corresponds to one of the eight restriction sites (MspI) utilized for haplotype construction. Analysis of the MspI allele frequencies in 29 phenylketonuria patients showed that the frequency of the MspI+ allele in this group was 79.4%. Polymorphic sites at nucleotide position +97 from the beginning of intron 10, and at nucleotide position -54 from the end of intron 5, were also described. The polymorphic sites revealed can be used as markers for identification of the PAH alleles in population genetic studies, and also serve for diagnostics of phenylketonuria (PKU). The presence of numerous nucleotide substitutions within the intronic sequences confirms highly polymorphic structure of the PAH gene.  相似文献   

2.
We investigated the frequency, origin, and molecular basis of phenylketonuria (PKU) in U.S. blacks. On the basis of 10 years of Maryland newborn-screening data, we found the frequency to be 1/50,000, or one-third that in whites. We performed haplotype analysis of the phenylalanine hydroxylase (PAH) gene of 36 U.S. blacks, 16 from individuals with classical PKU and 20 from controls. In blacks, 20% of wild-type PAH alleles have a common Caucasian haplotype (i.e., haplotype 1), whereas 80% had a variety of haplotypes, all rare in Caucasians and Asians. One of these, haplotype 15, accounted for a large fraction (30%). Among black mutant PAH alleles, 20% have a haplotype (i.e., either haplotype 1 or haplotype 4) common in Caucasians; 40% have a haplotype rare in Caucasians and Asians, and 40% have one of two previously undescribed haplotypes. Both can be derived from known haplotypes by a single event. One of these haplotypes is characterized by a new MspI restriction site, located in intron 8, which was present in five of 16 black mutant alleles but was not present in 60 U.S. black control, 20 U.S. Caucasian control, or 20 Caucasian mutant PAH alleles. Sequence analysis of DNA from a single individual, homozygous for the new MspI associated haplotype, shows homozygosity for a C----T transition at nucleotide 896 in exon 7 of the PAH cDNA, resulting in the conversion of leucine 255 to serine (L255S).  相似文献   

3.
4.
Summary A deletion of a single base in codon 55 (exon 2) of the phenylalanine hydroxylase (PAH) gene has been identified by direct DNA sequencing of 94 phenyl-ketonuria (PKU) chromosomes. This mutation alters the reading frame so that a stop signal (TAA) is generated in codon 60 of the PAH gene. Haplotype analysis revealed that all PKU alleles showing the codon 55 frameshift mutation exhibited haplotype 1. In our panel of DNA probes 13% of all mutant haplotype 1 alleles carry this particular mutation. Patients who were compound heterozygotes for this deletion and R408W in exon 12, or the splice mutation in intron 12, were affected by severe PKU. Thus, the clinical data provide additional evidence that haplotype 1 PKU alleles carry molecular defects which confer a null phenotype. In addition, we were able to show that the newly detected mutation occurs on alleles of different ethnic background.  相似文献   

5.
PAH 399 GTA(Val)→GTT(Val), a new silent mutation found in the Chinese   总被引:1,自引:1,他引:0  
Summary A silent mutation or sequence polymorphism, an A to T substitution at codon 399 in exon 11 of the phenylalanine hydroxylase (PAH) gene has been identified by DNA sequence analysis in the Chinese. The frequencies of this new mutation in normal and abnormal (phenylketonuria; PKU) genes are 0.005 and 0.09, respectively, based on the analyses of 100 apparently normal individuals and 39 PKU patients, as demonstrated by DNA amplification with polymerase chain reaction (PCR) and oligonucleotide hybridization methods. The results suggest that there is linkage disequilibrium between this polymorphism and PKU mutations in the PAH gene; approximately 10% of defect PAH alleles in the Chinese population may be identified with this sequence polymorphic marker.  相似文献   

6.
Recurrent mutation in the human phenylalanine hydroxylase gene.   总被引:10,自引:6,他引:4       下载免费PDF全文
We report the identification of a missense mutation of Glu280 to Lys280 in the phenylalanine hydroxylase (PAH) gene of a phenylketonuria (PKU) patient in Denmark. The mutation is associated with haplotype 1 of the PAH gene in this population. This mutation has previously been found in North Africa, where it is in linkage disequilibrium with haplotype 38. While it is conceivable that this mutation could have been transferred from one haplotype background to another by a double crossover or gene conversion event, the fact that the mutation is exclusively associated with the two different haplotypes in the two distinct populations supports the hypothesis that these two PKU alleles are the result of recurrent mutations in the human PAH gene. Furthermore, since the site of mutation involves a CpG dinucleotide, they may represent hot spots for mutation in the human PAH locus.  相似文献   

7.
Summary The hyperphenylalaninemic disorders of classic phenylketonuria (PKU), mild phenylketonuria, and hyperphenylalaninemia (HPA), result from a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH) or its cofactor (tetrahydrobiopterin). Use of the complementary DNA of this enzyme has allowed the establishment of a restriction fragment length polymorphism (RFLP) haplotype-analysis system. This haplotype analysis system provides the means for determination of mutant PAH alleles in most affected families and is the basis for mutational analysis of the PKU locus. This review is focused on two major areas of current PKU research: (1) the use of DNA haplotype analysis in the study of the population genetics of PAH deficiency, and (2) the study of genotypes, and their various combinations, as a means of explaining and predicting the phenotypic variability observed for the disorders of PAH deficiency.  相似文献   

8.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

9.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

10.
11.
The mutation S349P in exon 10 of the phenylalanine hydroxylase (PAH) gene was identified in one Norwegian and one Polish phenylketonuria (PKU) allele on a haplotype 1.7 background. This missense mutation in PAH codon 349 is a T to C transition in cDNA position 1267. This mutation has been reported both on haplotype 1 and 4, suggesting recurrent mutation. In two different expression systems, the pET and the pMAL systems of Escherichia coli, it was shown that the S349P mutation, introduced by site directed mutagenesis, results in complete loss of enzymatic activity. Thus, protein instability alone does not seem to be the direct cause of the lack of activity of this PKU mutation as previously reported.We have identified mutations in the PAH gene of 118 PKU patients in Norway. To obtain information about how the different mutations affect the catalytic properties of the PAH enzyme we have used two prokaryotic expression systems.We detected the mutation S349P (Forrest et al. 1991) in one Norwegian patient and one of Polish ancestry. This mutation has previously been reported on haplotype 4 in North-African Jews (Weinstein et al. 1993), and on haplotype 1 in French-Canadians (John et al. 1992) and in Danes (Guldberg et al. 1993a). Here we present gene expression data showing that the recombinant mutant enzyme has no measurable residual catalytic activity.  相似文献   

12.
13.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

14.
Classical Phenylketonuria (PKU) is an autosomal recessive human genetic disorder caused by a deficiency of hepatic phenylalanine hydroxylase (PAH). We isolated several mutant PAH cDNA clones from a PKU carrier individual and showed that they contained an internal 116 base pair deletion, corresponding precisely to exon 12 of the human chromosomal PAH gene. The deletion causes the synthesis of a truncated protein lacking the C-terminal 52 amino acids. Gene transfer and expression studies using the mutant PAH cDNA indicated that the deletion abolishes PAH activity in the cell as a result of protein instability. To determine the molecular basis of the deletion, the mutant chromosomal PAH gene was isolated from this individual and shown to contain a GT-- greater than AT substitution at the 5' splice donor site of intron 12. Thus, the consequence of the splice donor site mutation in the human liver is the skipping of the preceding exon during RNA splicing.  相似文献   

15.
Summary A single base transition of G to A at codon 408 of the phenylalanine hydroxylase gene is identified. This missense mutation results in the substitution of Arg408 for Gln408 (R408Q) and accounts for about 5% of phenylketonuria (PKU) chromosomes among Chinese. This mutation is in linkage disequilibrium with restriction fragment length polymorphism haplotype 4. In addition, another mutation (R408W), at the same codon and prevalent on haplotype 2 PKU chromosomes in Caucasians, is identified in a PKU allele of haplotype 41. Previously, this mutation has been observed on a haplotype 44 background in Chinese PKU patients.  相似文献   

16.
Summary Restriction fragment length polymorphism (RFLP) haplotypes and mutations at the phenylalanine hydroxylase (PAH) locus have been studied in 25 unrelated families from Croatia. The results of RFLP analysis demonstrated that 80% of the mutant alleles were associated with three haplotypes (1, 2 and 4). Eight mutations were detected on the background of six mutant haplotypes, comprising 68% of phenylketonuria (PKU) alleles in Croatia. The mutation in codon 408 was most frequent, as was the haplotype 2 allele with which it was associated. These data are in accordance with formerly published population genetic analyses at the PAH locus, and with studies revealing the molecular basis of the phenotypic heterogeneity of PKU. The codon 281 mutation was more frequent in Croatia than previously observed in other populations.  相似文献   

17.
Phenylketonuria (PKU) is an autosomal recessive disease due to deficiency of a hepatic enzyme, phenylalanine hydroxylase (PAH). The absence of PAH activity results in typical PKU while persistence of a residual enzyme activity gives rise to variant forms of the disease. We report here a 3-base pair in-frame deletion of the PAH gene (delta 194) in a mild variant, with markedly reduced affinity of the enzyme for phenylalanine (Km = 160 nM), and we provide functional evidence for responsibility of the deletion in the mutant phenotype. Since the deletion was located in the third exon of the gene, which presents no homology with other hydroxylases, we suggest that exon 3 is involved in the specificity of the enzyme for phenylalanine. Finally, since none of the 98 PKU patients tested were found to carry this particular deletion, our study suggests that this molecular event probably occurred recently on the background of a haplotype 2 gene in Portugal.  相似文献   

18.
Two missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of an Italian phenylketonuria (PKU) patient. Both mutations occurred in exon 7 of the PAH gene, resulting in the substitution of Trp for Arg at amino acid 252 (R252W) and of Leu for Pro (P281L) at amino acid 281 of the protein. Expression vectors containing either the normal human PAH cDNA or mutant cDNAs were constructed and transfected into cultured mammalian cells. Extracts from cells transfected with either mutant construct showed negligible enzyme activity and undetectable levels of immunoreactive PAH protein as compared to the normal construct. These results are compatible with the severe classical PKU phenotype observed in this patient. Population genetic studies in the Italian population revealed that both the R252W and the P281L mutations are in linkage disequilibrium with mutant restriction fragment length polymorphism (RFLP) haplotype 1, which is the most prevalent RFLP haplotype in this population. The R252W mutation is present in 10% and the P281L mutation is present in 20% of haplotype 1 mutant chromosomes. These mutations are both very rare among other European populations, suggesting a Mediterranean origin for these mutant chromosomes.  相似文献   

19.
CpG dinucleotides are mutation hot spots in phenylketonuria   总被引:26,自引:0,他引:26  
The coding region of the phenylalanine hydroxylase (PAH) gene contains 22 CpG dinucleotides, including five doublets in the seventh exon of the gene. We hypothesized that CpG doublets could represent mutation hot spots in PAH deficiencies and we carried out the systematic sequence analysis of exon 7 in 20 unrelated PAH-deficient kindreds of Mediterranean ancestry. This procedure resulted in the detection of two novel missense mutations whose location and nature (CG to CA and CG to TG) were consistent with the accidental deamination of a 5-methylcytosine in a CpG doublet (codon 261arg----gln and codon 252arg----trp). Moreover, the codon 261 mutation was found to be associated with mutant restriction fragment length polymorphism (RFLP) haplotype 1, the most frequent mutant RFLP haplotype at the PAH locus in the studies reported thus far. However, since the mutation was detected in only 36% of haplotype 1 mutant alleles, it appears that this haplotype at the PAH locus is genotypically heterogeneous in Mediterranean countries.  相似文献   

20.
Phenylketonuria (PKU) is a common metabolic disorder among Chinese, with a prevalence of about 1 in 16,500 births. This frequency is very similar to that among Caucasians. Individual exons of the phenylalanine hydroxylase (PAH) gene with flanking introns were amplified by polymerase chain reaction and cloned into M13 for sequence analysis. An Arg111-to-Ter111 mutation has been identified in exon 3 of the PAH gene in a Chinese PKU patient. The mutation is in linkage disequilibrium with the mutant haplotype 4 alleles which are the most prevalent haplotype among the Orientals. The mutation accounts for about 10% of the Chinese PKU alleles and is absent from the Caucasians, demonstrating that independent mutational events have occurred in the PAH locus after racial divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号