首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
BACKGROUND: Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS: We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS: Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.  相似文献   

5.
6.
The Cdc6 DNA replication initiation factor is targeted for ubiquitin-mediated proteolysis by the E3 ubiquitin ligase SCF(CDC4) from the end of G1phase until mitosis in the budding yeast Saccharomyces cerevisiae. Here we describe a dominant-negative CDC6 mutant that, when overexpressed, arrests the cell cycle by inhibiting cyclin-dependent kinases (CDKs) and, thus, prevents passage through mitosis. This mutant protein inhibits CDKs more efficiently than wild-type Cdc6, in part because it is completely refractory to SCF(CDC4)-mediated proteolysis late in the cell cycle and consequently accumulates to high levels. The mutation responsible for this phenotype destroys a putative CDK phosphorylation site near the middle of the Cdc6 primary amino acid sequence. We show that this site lies within a novel Cdc4-interacting domain distinct from a Cdc4-interacting site identified previously near the N-terminus of the protein. We show that both sites can target Cdc6 for proteolysis in late G1/early S phase whilst only the newly identified site can target Cdc6 for proteolysis during mitosis.  相似文献   

7.
The replication initiation protein Cdc6p forms a tight complex with Cdc28p, specifically with forms of the kinase that are competent to promote replication initiation. We now show that potential sites of Cdc28 phosphorylation in Cdc6p are required for the regulated destruction of Cdc6p that has been shown to occur during the Saccharomyces cerevisiae cell cycle. Analysis of Cdc6p phosphorylation site mutants and of the requirement for Cdc28p in an in vitro ubiquitination system suggests that targeting of Cdc6p for degradation is more complex than previously proposed. First, phosphorylation of N-terminal sites targets Cdc6p for polyubiquitination probably, as expected, through promoting interaction with Cdc4p, an F box protein involved in substrate recognition by the Skp1-Cdc53-F-box protein (SCF) ubiquitin ligase. However, in addition, mutation of a single, C-terminal site stabilizes Cdc6p in G2 phase cells without affecting substrate recognition by SCF in vitro, demonstrating a second and novel requirement for specific phosphorylation in degradation of Cdc6p. SCF-Cdc4p- and N-terminal phosphorylation site-dependent ubiquitination appears to be mediated preferentially by Clbp/Cdc28p complexes rather than by Clnp/Cdc28ps, suggesting a way in which phosphorylation of Cdc6p might control the timing of its degradation at then end of G1 phase of the cell cycle. The stable cdc6 mutants show no apparent replication defects in wild-type strains. However, stabilization through mutation of three N-terminal phosphorylation sites or of the single C-terminal phosphorylation site leads to dominant lethality when combined with certain mutations in the anaphase-promoting complex.  相似文献   

8.
9.
Regulated degradation of the transcription factor Gcn4.   总被引:3,自引:2,他引:1  
D Kornitzer  B Raboy  R G Kulka    G R Fink 《The EMBO journal》1994,13(24):6021-6030
  相似文献   

10.
11.
The ubiquitin-conjugating enzyme Cdc34 (cell division cycle 34) plays an essential role in promoting the G1-S-phase transition of the eukaryotic cell cycle and is phosphorylated in vivo. In the present study, we investigated if phosphorylation regulates Cdc34 function. We mapped the in vivo phosphorylation sites on budding yeast Cdc34 (yCdc34; Ser207 and Ser216) and human Cdc34 (hCdc34 Ser203, Ser222 and Ser231) to serine residues in the acidic tail domain, a region that is critical for Cdc34's cell cycle function. CK2 (protein kinase CK2) phosphorylates both yCdc34 and hCdc34 on these sites in vitro. CK2-mediated phosphorylation increased yCdc34 ubiquitination activity towards the yeast Saccharomyces cerevisiae Sic1 in vitro, when assayed in the presence of its cognate SCFCdc4 E3 ligase [where SCF is Skp1 (S-phase kinase-associated protein 1)/cullin/F-box]. Similarly, mutation of the yCdc34 phosphorylation sites to alanine, aspartate or glutamate residues altered Cdc34-SCFCdc4-mediated Sic1 ubiquitination activity. Similar results were obtained when yCdc34's ubiquitination activity was assayed in the absence of SCFCdc4, indicating that phosphorylation regulates the intrinsic catalytic activity of Cdc34. To evaluate the in vivo consequences of altered Cdc34 activity, wild-type yCdc34 and the phosphosite mutants were introduced into an S. cerevisiae cdc34 deletion strain and, following synchronization in G1-phase, progression through the cell cycle was monitored. Consistent with the increased ubiquitination activity in vitro, cells expressing the phosphosite mutants with higher catalytic activity exhibited accelerated cell cycle progression and Sic1 degradation. These studies demonstrate that CK2-mediated phosphorylation of Cdc34 on the acidic tail domain stimulates Cdc34-SCFCdc4 ubiquitination activity and cell cycle progression.  相似文献   

12.
13.
14.
Pho85 is a versatile cyclin-dependent kinase (CDK) found in budding yeast that regulates a myriad of eukaryotic cellular functions in concert with 10 cyclins (called Pcls). Unlike cell cycle CDKs that require phosphorylation of a serine/threonine residue by a CDK-activating kinase (CAK) for full activation, Pho85 requires no phosphorylation despite the presence of an equivalent residue. The Pho85-Pcl10 complex is a key regulator of glycogen metabolism by phosphorylating the substrate Gsy2, the predominant, nutritionally regulated form of glycogen synthase. Here we report the crystal structures of Pho85-Pcl10 and its complex with the ATP analog, ATPγS. The structure solidified the mechanism for bypassing CDK phosphorylation to achieve full catalytic activity. An aspartate residue, invariant in all Pcls, acts as a surrogate for the phosphoryl adduct of the phosphorylated, fully activated CDK2, the prototypic cell cycle CDK, complexed with cyclin A. Unlike the canonical recognition motif, SPX(K/R), of phosphorylation sites of substrates of several cell cycle CDKs, the motif in the Gys2 substrate of Pho85-Pcl10 is SPXX. CDK5, an important signal transducer in neural development and the closest known functional homolog of Pho85, does not require phosphorylation either, and we found that in its crystal structure complexed with p25 cyclin a water/hydroxide molecule remarkably plays a similar role to the phosphoryl or aspartate group. Comparison between Pho85-Pcl10, phosphorylated CDK2-cyclin A, and CDK5-p25 complexes reveals the convergent structural characteristics necessary for full kinase activity and the variations in the substrate recognition mechanism.  相似文献   

15.
16.
The yeast Cdc7 function is required for the G1/S transition and is dependent on passage through START, a point controlled by the Cdc28/cdc2/p34 protein kinase. CDC7 encodes a protein kinase activity, and we now show that this kinase activity varies in the cell cycle but that protein levels appear to remain constant. We present several lines of evidence that periodic activation of CDC7 kinase is at least in part through phosphorylation. First, the kinase activity of the Cdc7 protein is destroyed by dephosphorylation of the protein in vitro with phosphatase. Second, Cdc7 protein is hypophosphorylated and inactive as a kinase in extracts of cells arrested at START but becomes active and maximally phosphorylated subsequent to passage through START. The phosphorylation pattern of Cdc7 protein is complex. Phosphopeptide mapping reveals four phosphopeptides in Cdc7 prepared from asynchronous yeast cells. Both autophosphorylation and phosphorylation in trans appear to contribute to this pattern. Autophosphorylation is shown to occur by using a thermolabile Cdc7 protein. A protein in yeast extracts can phosphorylate and activate Cdc7 protein made in Escherichia coli, and phosphorylation is thermolabile in cdc28 mutant extracts. Cdc7 protein carrying a serine to alanine change in the consensus recognition site for Cdc28 kinase shows an altered phosphopeptide map, suggesting that this site is important in determining the overall Cdc7 phosphorylation pattern.  相似文献   

17.
The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast.   总被引:31,自引:6,他引:25       下载免费PDF全文
L S Drury  G Perkins    J F Diffley 《The EMBO journal》1997,16(19):5966-5976
The budding yeast Cdc6 protein (Cdc6p) is essential for formation of pre-replicative complexes (pre-RCs) at origins of DNA replication. Regulation of pre-RC assembly plays a key role in making initiation of DNA synthesis dependent upon passage through mitosis and in limiting DNA replication to once per cell cycle. Cdc6p is normally only present at high levels during the G1 phase of the cell cycle. This is partly because the CDC6 gene is only transcribed during G1. In this article we show that rapid degradation of Cdc6p also contributes to this periodicity. Cdc6p degradation rates are regulated during the cell cycle, reaching a peak during late G1/early S phase. Removal of a 47-amino-acid domain near the N-terminus of Cdc6p prevents degradation of Cdc6p. Likewise, mutations in the Cdc4/34/53 pathway involved in ubiquitin-mediated degradation block proteolysis and genetic evidence is presented indicating that the N-terminus of Cdc6p interacts with the Cdc4/34/53 pathway, probably through Cdc4p. A stable Cdc6p mutant which is no longer degraded by the Cdc4/34/53 pathway is, none the less, fully functional. Constitutive overexpression of either wild-type or stable Cdc6p does not induce re-replication and does not induce assembly of pre-replicative complexes after DNA replication is complete.  相似文献   

18.
Sphingoid long-chain base 1-phosphates (LCBPs) act as bioactive lipid molecules in eukaryotic cells. In yeast, LCBPs are synthesized mainly by the long-chain base kinase Lcb4p. Until now, the regulatory mechanism for Lcb4p has been unclear. In the present study, we found that Lcb4p is post-translationally modified by phosphorylation. Using a protein kinase mutant yeast collection, we further demonstrated that the cyclin-dependent kinase Pho85p is involved in this phosphorylation. Pho85p functions in a number of cellular processes, especially in response to environmental changes. Two of 10 Pho85p cyclins, Pcl1p and Pcl2p had overlapping functions in the phosphorylation of Lcb4p. Site-directed mutagenesis identified the phosphorylation sites in Lcb4p as Ser(451) and Ser(455). Additionally, pulse-chase experiments revealed that Lcb4p is degraded via the ubiquitin-dependent pathway. The protein was stabilized in Deltapho85 cells, suggesting that phosphorylation acts as a signal for the degradation. Lcb4p is down-regulated in the stationary phase of cell growth, and both phosphorylation and ubiquitination appear to be important for this process. Moreover, we demonstrated that Lcb4p is delivered to the vacuole for degradation via the multivesicular body. Since forced accumulation of LCBPs results in prolonged growth during the stationary phase, down-regulation of Lcb4p may be physiologically important for proper cellular responses to nutrient deprivation.  相似文献   

19.
The extracellular signal-regulated kinase (ERK) pathway is generally mitogenic, but, upon strong activation, it causes cell cycle arrest by a not-yet fully understood mechanism. In response to genotoxic stress, Chk1 hyperphosphorylates Cdc25A, a positive cell cycle regulator, and targets it for Skp1/Cullin1/F-box protein (SCF)β-TrCP ubiquitin ligase-dependent degradation, thereby leading to cell cycle arrest. Here, we show that strong ERK activation can also phosphorylate and target Cdc25A for SCFβ-TrCP-dependent degradation. When strongly activated in Xenopus eggs, the ERK pathway induces prominent phosphorylation and SCFβ-TrCP-dependent degradation of Cdc25A. p90rsk, the kinase downstream of ERK, directly phosphorylates Cdc25A on multiple sites, which, interestingly, overlap with Chk1 phosphorylation sites. Furthermore, ERK itself phosphorylates Cdc25A on multiple sites, a major site of which apparently is phosphorylated by cyclin-dependent kinase (Cdk) in Chk1-induced degradation. p90rsk phosphorylation and ERK phosphorylation contribute, roughly equally and additively, to the degradation of Cdc25A, and such Cdc25A degradation occurs during oocyte maturation in which the endogenous ERK pathway is fully activated. Finally, and importantly, ERK-induced Cdc25A degradation can elicit cell cycle arrest in early embryos. These results suggest that strong ERK activation can target Cdc25A for degradation in a manner similar to, but independent of, Chk1 for cell cycle arrest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号