首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the phosphorylation state of Rho-kinase substrates including MLC and ERM family proteins in vivo in a cooperative manner.  相似文献   

2.
We examined whether adducin function is regulated through Rho-kinase after agonist stimulation in platelets. A variety of stimuli such as thrombin, STA(2) (a stable analog of TXA(2)), Ca(2+) ionophore, phorbol diester, and shear stress induced phosphorylation of alpha-adducin at Thr445. Preincubation with the Rho-kinase inhibitor Y-27632 in platelets inhibited agonist-induced phosphorylation of alpha-adducin. STA(2) stimulation led to a redistribution of adducin from Triton-insoluble (high speed) fraction (membrane skeleton) to Triton-insoluble (low speed) fraction (cytoskeleton) and detergent-soluble fraction. Phosphoadducin at Thr445 was selectively isolated in the cytoskeletal fraction, whereas phosphoadducin at Ser726 was mainly present in the Triton-soluble fraction. Y-27632 inhibition of STA(2)-induced alpha-adducin phosphorylation at Thr445 inhibited incorporation of alpha-adducin and spectrin into the platelet cytoskeleton, although Y-27632 did not affect phosphorylation of alpha-adducin at Ser726. These results suggest that Rho-kinase regulates the association of alpha-adducin and spectrin with the actin cytoskeleton in platelet activation.  相似文献   

3.
Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells   总被引:1,自引:0,他引:1  
Endothelial nitric oxide synthase (eNOS) produces nitric oxide (NO), which is involved in various physiological functions of the cardiovascular system. eNOS is activated by dephosphorylation at Thr495 and phosphorylation at Ser1177. Inhibition of Rho-kinase, an effector of the small GTPase RhoA, leads to activation of Akt/PKB, which phosphorylates eNOS at Ser1177 and thereby promotes NO production. However, little is known about the effects of Rho-kinase on phosphorylation of Thr495. We here found that the constitutively active form of Rho-kinase phosphorylated eNOS at Thr495 in vitro. Expression of the constitutively active form of RhoA or Rho-kinase increased this phosphorylation in COS-7 cells. Addition of thrombin to cultured human umbilical vein endothelial cells induced phosphorylation of eNOS at Thr495. Treatment with Y27632, a Rho-kinase inhibitor, suppressed thrombin-induced phosphorylation at Thr495. These results indicate that Rho-kinase can directly phosphorylate eNOS at Thr495 to suppress NO production in endothelium.  相似文献   

4.
Cell migration is important to the integrity of the gastrointestinal tract for the normal movement of cells from crypt to villi and the healing of wounds. Polyamines are essential to cell migration, mucosal restitution, and, hence, healing. Polyamine depletion by α-difluoromethyl ornithine (DFMO) inhibited migration by decreasing lamellipodia and stress fiber formation and preventing the activation of Rho-GTPases. Polyamine depletion increased the association of the thick F-actin cortex with phosphorylated myosin regulatory light chain (pMRLC). In this study, we determined why MRLC is constitutively phosphorylated as part of the actin cortex. Inhibition of myosin light chain kinase (MLCK) decreased RhoA and Rac1 activities and significantly inhibited migration. Polyamine depletion increased phosphorylation of MRLC (Thr18/Ser19) and stabilized the actin cortex and focal adhesions. The Rho-kinase inhibitor Y27632 increased spreading and migration by decreasing the phosphorylation of MRLC, remodeling focal adhesions, and by activating Rho-GTPases. Thus phosphorylation of MRLC appears to be the rate-limiting step during the migration of IEC-6 cells. In addition, increased localization of RhoA with the actin cortex in polyamine-depleted cells appears to activate Rho-kinase. In the absence of polyamines, activated Rho-kinase phosphorylates myosin phosphatase targeting subunit 1 (MYPT1) at serine-668 leading to its inactivation and preventing the recruitment of phosphatase (protein phosphastase, PP1cδ) to the actomyosin cortex. In this condition, MRLC is constitutively phosphorylated and cycling does not occur. Thus activated myosin binds F-actin stress fibers and prevents focal adhesion turnover, Rho-GTPase activation, and the remodeling of the cytoskeleton required for migration.  相似文献   

5.
Rho family GTPases are key regulators of various physiological processes. Several recent studies indicated that the antagonistic relationship between Rho and Rac is essential for cell polarity and that the Rac activity is negatively regulated by Rho. In this study, we found that Rho-kinase, an effector of Rho, counteracted the Rac GEF STEF-induced Rac1 activation in COS7 cells. Rho-kinase phosphorylated STEF at Thr1662 in vitro, and Y-27632, a Rho-kinase inhibitor, suppressed lysophosphatidic acid-induced phosphorylation of STEF in PC12D cells. STEF interacted with specific molecules such as microtubule-associated protein 1B, and the phosphorylation of STEF by Rho-kinase diminished its interaction with these molecules. STEF promoted nerve growth factor-induced neurite outgrowth in PC12D cells, while the phosphomimic mutant of STEF had a weakened ability to enhance neurite outgrowth. Taken together, these results suggest that the phosphorylation of STEF by Rho-kinase exerts the inhibitory effect on the function of STEF.  相似文献   

6.
CPI17 and myosin binding subunit of type 1 protein phosphatase (MBS) are the regulators of myosin light chain phosphatase (MLCP). The function of both regulators is controlled by phosphorylation. The phosphorylation of CPI17 at Thr38 significantly enhances the inhibitory activity of CPI17 and the phosphorylation at Thr641 of MBS decreases the MLCP activity. Here, we found that p21-activated protein kinase (PAK) phosphorylates both CPI17 at Thr38 and MBS at Thr641. For CPI17, PAK specifically phosphorylated at Thr38, since the mutation of Thr38 to Ala completely abolished the phosphorylation. On the other hand, PAK phosphorylated Thr641 but not Thr799 of MBS, the site phosphorylated by Rho kinase. Because PAK phosphorylates MBS more than 1 mol/mol, it is anticipated that PAK also phosphorylates other sites in addition to Thr641. CPI17 phosphorylation induced by PAK significantly enhanced the inhibitory activity of CPI17. On the other hand, the phosphorylation of MBS by PAK also decreased the MLCP activity. These results raise the possibility that the PAK pathway plays a role in MLCP regulation.  相似文献   

7.
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals.  相似文献   

8.
The ezrin/radixin/moesin (ERM) proteins are involved in actin filament/plasma membrane interaction that is regulated by Rho. We examined whether ERM proteins are directly phosphorylated by Rho- associated kinase (Rho-kinase), a direct target of Rho. Recombinant full-length and COOH-terminal half radixin were incubated with constitutively active catalytic domain of Rho-kinase, and ~30 and ~100% of these molecules, respectively, were phosphorylated mainly at the COOH-terminal threonine (T564). Next, to detect Rho-kinase–dependent phosphorylation of ERM proteins in vivo, we raised a mAb that recognized the T564-phosphorylated radixin as well as ezrin and moesin phosphorylated at the corresponding threonine residue (T567 and T558, respectively). Immunoblotting of serum-starved Swiss 3T3 cells with this mAb revealed that after LPA stimulation ERM proteins were rapidly phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in a Rho-dependent manner and then dephosphorylated within 2 min. Furthermore, the T564 phosphorylation of recombinant COOH-terminal half radixin did not affect its ability to bind to actin filaments in vitro but significantly suppressed its direct interaction with the NH2-terminal half of radixin. These observations indicate that the Rho-kinase–dependent phosphorylation interferes with the intramolecular and/ or intermolecular head-to-tail association of ERM proteins, which is an important mechanism of regulation of their activity as actin filament/plasma membrane cross-linkers.  相似文献   

9.
Major sites for Rho-kinase on the myosin phosphatase target subunit (MYPT1) are Thr695 and Thr850. Phosphorylation of Thr695 inhibits phosphatase activity but the role of phosphorylation at Thr850 is not clear and is evaluated here. Phosphorylation of both Thr695 and Thr850 by Rho-kinase inhibited activity of the type 1 phosphatase catalytic subunit. Rates of phosphorylation of the two sites were similar and efficacy of inhibition following phosphorylation was equivalent for each site. Phosphorylation of each site on MYPT1 was detected in A7r5 cells, but Thr850 was preferred by Rho-kinase and Thr695 was phosphorylated by an unidentified kinase(s).  相似文献   

10.
It is clear from several studies that myosin phosphatase (MP) can be inhibited via a pathway that involves RhoA. However, the mechanism of inhibition is not established. These studies were carried out to test the hypothesis that Rho-kinase (Rho-associated kinase) via phosphorylation of the myosin phosphatase target subunit 1 (MYPT1) inhibited MP activity and to identify relevant sites of phosphorylation. Phosphorylation by Rho-kinase inhibited MP activity and this reflected a decrease in V(max). Activity of MP with different substrates also was inhibited by phosphorylation. Two major sites of phosphorylation on MYPT1 were Thr(695) and Thr(850). Various point mutations were designed for these phosphorylation sites. Following thiophosphorylation by Rho-kinase and assays of phosphatase activity it was determined that Thr(695) was responsible for inhibition. A site- and phosphorylation-specific antibody was developed for the sequence flanking Thr(695) and this recognized only phosphorylated Thr(695) in both native and recombinant MYPT1. Using this antibody it was shown that stimulation of serum-starved Swiss 3T3 cells by lysophosphatidic acid, thought to activate RhoA pathways, induced an increase in Thr(695) phosphorylation on MYPT1 and this effect was blocked by a Rho-kinase inhibitor, Y-27632. In summary, these results offer strong support for a physiological role of Rho-kinase in regulation of MP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号