首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The venom glands and related muscles of sea snakes conform in their general structure to those of the terrestrial elapids. The venom gland, however, is smaller in size and the accessory gland is considerably reduced. A similar pattern is found in the Australian elapid Notechis. The musculus compressor glandulae is well developed in the sea snakes and in some species its posterior-medial portion runs uninterruptedly from the origin to the insertion of the muscle. This might be considered as a primitive condition suggesting an early divergence of the sea snakes from an ancestral elapid stock. Three species of sea snakes, Aipysurus eydouxi, Emydocephalus annulatus, and E. ijimae, feed on fish eggs and have very small, but still functioning, venom glands. The reduced accessory gland of the sea snakes is apparently connected with their aquatic environment, as a similar condition is found also in the elapine Boulengerina annulata which lives in large lakes of Central Africa. The similarity in structure of the venom gland between sea snakes and Notechis scutatus may point to a possible phylogenetic relationship between this group of Australian elapids and hydrophiine snakes.  相似文献   

3.
4.
A novel prothrombin activator, Mikarin, has been isolated from Micropechis ikaheka venom. It is a single polypeptide chain metalloproteinase with the apparent molecular weight of 47kDa. Mikarin exhibits Ca(2+)-independent prothrombin activation, but no effects on other blood coagulation factors, such as factor X and fibrinogen. Mikarin is the first member of group I prothrombin activators from elapid venom. Like other high-molecular-weight snake venom proteinases, it has three structural domains, metalloproteinase and disintegrin-like and Cys-rich domains, and belongs to the P-III class of snake venom metalloproteinases. The N-terminal of Mikarin exhibits 76% sequence identity with Cobrin, a metalloproteinase identified from Naja naja venom, but very lower identities were found when compared with those from viperid and crotalid venom. In addition, the presence of disintegrin-like and Cys-rich domains in snake venom metalloproteinases with diverse biological activities suggests that these domains may be important for their function.  相似文献   

5.
Evolutionary relationships among the major elapid clades, particularly the taxonomic position of the partially aquatic sea kraits (Latkauda) and the fully aquatic true sea snakes have been the subject of much debate. To discriminate among existing phylogenetic and biogeographic hypotheses, portions of both the 16S rRNA and cytochrome b mitochondrial DNA genes were sequenced from 16 genera and 17 species representing all major elapid snake clades from throughout the world and two non-elapid outgroups. This sequence data yielded 181 informative sites under parsimony. Parsimony analyses of the separate data sets produced trees of broad agreement although less well supported than the single most parsimonious tree resulting from the combined analyses. These results support the following hypotheses: (1) the Afro-Asian cobra radiation forms one or more sister groups to other elapids, (2) American and Asian coral snakes form a clade, corroborating morphological studies, (3) Bungarus forms a sister group to the hydrophiines comprised of Latkauda, terrestrial Australo-Papuan elapids and true sea snakes, (4) Latkauda and true sea snakes do not form a monophyletic group but instead each group shares an independent history with terrestrial Australo-Papuan elapids, corroborating previous studies, (5) a lineage of Melanesian elapids forms the sister group to Latkauda, terrestrial Australian species and true sea snakes. In agreement with previous morphologically based studies, the sequence data suggests that Bungarus and Latkauda represent transitional clades between the elapine 'palatine erectors' and hydrophiine 'palatine draggers'. Both intra and inter-clade genetic distances are considerable, implying that each of the major radiations have had long independent histories. I suggest an African, Asian, or Afro-Asian origin for elapids as a group, with independent Asian origins for American coral snakes and the hydrophiines.  相似文献   

6.
The Australian elapid snakes are amongst the most venomous snakes in the world, but much less is known about the overall venom composition in comparison to Asian and American snakes. We have used a combined approach of cDNA cloning and 2-DE with MS to identify nerve growth factor (NGF) in venoms of the Australian elapid snakes and demonstrate its neurite outgrowth activity. While a single 730 nucleotide ORF, coding for a 243 amino acid precursor protein was detected in all snakes, use of 2-DE identified NGF proteins with considerable variation in molecular size within and between the different snakes. The variation in size can be explained at least in part by N-linked glycosylation. It is possible that these modifications alter the stability, activity and other characteristics of the snake NGFs. Further characterisation is necessary to delineate the function of the individual NGF isoforms.  相似文献   

7.
A short-chain neurotoxin Pseudechis australis a (toxin Pa a) was isolated from the venom of an Australian elapid snake Pseudechis australis (king brown snake) by sequential chromatography on CM-cellulose, Sephadex G-50 and CM-cellulose columns. Toxin Pa a has an LD50 (intravenous) value of 76 micrograms/kg body wt. in mice and consists of 62 amino acid residues. The amino acid sequence of Pa a shows considerable homology with those of short-chain neurotoxins of elapid snakes, especially of true sea snakes.  相似文献   

8.
9.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

10.
1. Peptide fingerprints of tryptic digests of the globins of sea snake species of Hydrophis, Pelamis, Aipysurus, Laticauda and the terrestrial elapid Naja were compared. 2. Globin divergence, as estimated from peptide fingerprints, paralleled closely transferrin divergence, as measured immunologically. 3. Taxonomic affinities, suggested by the fingerprint data, are concordant with McDowell's taxonomic system for sea snakes with the following exceptions: (a) Laticauda shows a closer affinity to the true sea snakes than to the terrestrial elapid Naja. (b) Sea snakes appear to be more widely divergent from terrestrial elapids than his scheme suggests.  相似文献   

11.
Two lethal proteins, which specifically bind to the nAChR from Torpedo californica, were isolated from the venom of Pseudonaja textilis, the common brown snake from Australia. The isolated proteins have masses of 6236 and 6345 Da and are structurally related to short-chain neurotoxins from other elapids. Six cDNAs encoding isoforms of related neurotoxins were cloned using the RT-PCR of the venom gland mRNAs. The sequences of the corresponding proteins consist of 57-58 amino acid residues and display several unique features when compared with all known short-chain neurotoxins. Accordingly, they grouped separately in phylogenetic analysis. The six cDNAs were expressed in Escherichia coli and the recombinant proteins were characterized. They have similar masses and display similar toxicities and binding constants to the nAChR as the native toxins isolated from the venom. Thus, a new group of short-chain postsynaptic neurotoxins from the venom of an Australian elapid has been characterized.  相似文献   

12.
Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (polyspecific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a ‘pan-specific’ AV against many snakes over a wide geographical area in some countries/regions has not been possible. If a ‘pan-specific’ AV effective against a variety of snakes from many countries could be prepared, it could be produced economically in large volume for use in many countries and save many lives. The aim of this study was to produce a pan-specific antiserum effective against major medically important elapids in Asia. The strategy was to use toxin fractions (TFs) of the venoms in place of crude venoms in order to reduce the number of antigens the horses were exposed to. This enabled inclusion of a greater variety of elapid venoms in the immunogen mix, thus exposing the horse immune system to a diverse repertoire of toxin epitopes, and gave rise to antiserum with wide paraspecificity against elapid venoms. Twelve venom samples from six medically important elapid snakes (4 Naja spp. and 2 Bungarus spp.) were collected from 12 regions/countries in Asia. Nine of these 12 venoms were ultra-filtered to remove high molecular weight, non-toxic and highly immunogenic proteins. The remaining 3 venoms were not ultra-filtered due to limited amounts available. The 9 toxin fractions (TFs) together with the 3 crude venoms were emulsified in complete Freund’s adjuvant and used to immunize 3 horses using a low dose, low volume, multisite immunization protocol. The horse antisera were assayed by ELISA and by in vivo lethality neutralization in mice. The findings were: a) The 9 TFs were shown to contain all of the venom toxins but were devoid of high MW proteins. When these TFs, together with the 3 crude venoms, were used as the immunogen, satisfactory ELISA antibody titers against homologous/heterologous venoms were obtained. b) The horse antiserum immunologically reacted with and neutralized the lethal effects of both the homologous and the 16 heterologous Asian/African elapid venoms tested. Thus, the use of TFs in place of crude venoms and the inclusion of a variety of elapid venoms in the immunogen mix resulted in antiserum with wide paraspecificity against elapid venoms from distant geographic areas. The antivenom prepared from this antiserum would be expected to be pan-specific and effective in treating envenomations by most elapids in many Asian countries. Due to economies of scale, the antivenom could be produced inexpensively and save many lives. This simple strategy and procedure could be readily adapted for the production of pan-specific antisera against elapids of other continents.  相似文献   

13.
Australian elapid snakes are among the most venomous in the world. Their venoms contain multiple components that target blood hemostasis, neuromuscular signaling, and the cardiovascular system. We describe here a comprehensive approach to separation and identification of the venom proteins from 18 of these snake species, representing nine genera. The venom protein components were separated by two-dimensional PAGE and identified using mass spectrometry and de novo peptide sequencing. The venoms are complex mixtures showing up to 200 protein spots varying in size from <7 to over 150 kDa and in pI from 3 to >10. These include many proteins identified previously in Australian snake venoms, homologs identified in other snake species, and some novel proteins. In many cases multiple trains of spots were typically observed in the higher molecular mass range (>20 kDa) (indicative of post-translational modification). Venom proteins and their post-translational modifications were characterized using specific antibodies, phosphoprotein- and glycoprotein-specific stains, enzymatic digestion, lectin binding, and antivenom reactivity. In the lower molecular weight range, several proteins were identified, but the predominant species were phospholipase A2 and alpha-neurotoxins, both represented by different sequence variants. The higher molecular weight range contained proteases, nucleotidases, oxidases, and homologs of mammalian coagulation factors. This information together with the identification of several novel proteins (metalloproteinases, vespryns, phospholipase A2 inhibitors, protein-disulfide isomerase, 5'-nucleotidases, cysteine-rich secreted proteins, C-type lectins, and acetylcholinesterases) aids in understanding the lethal mechanisms of elapid snake venoms and represents a valuable resource for future development of novel human therapeutics.  相似文献   

14.
Venom from the Australian elapid Pseudonaja textilis (Common or Eastern Brown snake), is the second most toxic snake venom known and is the most common cause of death from snake bite in Australia. This venom is known to contain a prothrombin activator complex, serine proteinase inhibitors, various phospholipase A2s, and pre- and postsynaptic neurotoxins. In this study, we performed a proteomic identification of the venom using two-dimensional gel electrophoresis, mass spectrometry, and de novo peptide sequencing. We identified most of the venom proteins including proteins previously not known to be present in the venom. In addition, we used immunoblotting and post-translational modification-specific enzyme stains and antibodies that reveal the complexity and regional diversity of the venom. Modifications observed include phosphorylation, gamma-carboxylation, and glycosylation. Glycoproteins were further characterized by enzymatic deglycosylation and by lectin binding specificity. The venom contains an abundance of glycoproteins with N-linked sugars that include glucose/mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acids. Additionally there are multiple isoforms of mammalian coagulation factors that comprise a significant proportion of the venom. Indeed two of the identified proteins, a procoagulant and a plasmin inhibitor, are currently in development as human therapeutic agents.  相似文献   

15.
The amino acid sequence of a short-chain neurotoxin Acanthophis antarcticus c (toxin Aa c) from the venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus, subfamily Acanthophiinae) was elucidated. Toxin Aa c is composed of 62 amino acid residues, including eight half-cystine residues and a cysteine residue. The amino acid sequence of toxin Aa c is homologous with those of other short-chain neurotoxins found in snakes of the family Elapidae, especially with those from snakes of the subfamily Hydrophiinae. The single cysteine residue was located in position 4. Toxin Aa c has a lethal dose (LD50) of 0.08 micrograms/g body weight of mouse on intramuscular injection.  相似文献   

16.
Snake venom serine proteinases (SVSPs) may affect hemostatic pathways by specifically activating components involved in coagulation, fibrinolysis and platelet aggregation or by unspecific proteolytic degradation. In this study, we purified and characterized an SVSP from Bothrops cotiara venom, named cotiarinase, which generated thrombin upon incubation with prothrombin. Cotiarinase was isolated by a two-step procedure including gel-filtration and cation-exchange chromatographies and showed a single protein band with a molecular mass of 29 kDa by SDS-polyacrylamide gel electrophoresis under reducing conditions. Identification of cotiarinase by mass spectrometric analysis revealed peptides that matched sequences of viperid SVSPs. Cotiarinase did not show fibrinogen-clotting, platelet-aggregating, fibrinogenolytic and factor X activating activities. Upon incubation with prothrombin the generation of thrombin was detected using the peptide substrate d-Phe-Pip-Arg-pNA. Moreover, mass spectrometric identification of prothrombin fragments generated by cotiarinase in the absence of co-factors (phospholipids, factor Va, factor Xa and Ca2+ ions), indicated the limited proteolysis of this protein to release prothrombin 1, fragment 1 and thrombin. Cotiarinase is a novel SVSP that acts on prothrombin to release active thrombin that does not match any group of the current classification of snake venom prothrombin activators.  相似文献   

17.
The New World coral snakes (micrurines), genera Micrurus and Micruroides have recently been seen as derived from a lineage of South American colubrids, rather than from a common lineage with Old World elapids and sea snakes as traditionally accepted. We compared serum albumins of representative coral snakes, Old World elapids, sea snakes, and neotropical colubrids immunologically. Phylogenetic analysis of the biochemical data unambiguously allies the micrurines with the family Elapidae as it is currently understood. Using the albumin molecular clock calibration derived from other terrestrial vertebrates. we suggest a late Oligocene-early Miocene separation between the New and Old World elapid lineages. This requires a movement of elapid stocks from Asia into North America, and supporting evidence for this model is derived from several paleontological sources. We suggest that a number of extant micrurine lineages have had long independent histories.  相似文献   

18.
Toward the goal of recovering the phylogenetic relationships among elapid snakes, we separately found the shortest trees from the amino acid sequences for the venom proteins phospholipase A2and the short neurotoxin, collectively representing 32 species in 16 genera. We then applied a method we term gene tree parsimony for inferring species trees from gene trees that works by finding the species tree which minimizes the number of deep coalescences or gene duplications plus unsampled sequences necessary to fit each gene tree to the species tree. This procedure, which is both logical and generally applicable, avoids many of the problems of previous approaches for inferring species trees from gene trees. The results support a division of the elapids examined into sister groups of the Australian and marine (laticaudines and hydrophiines) species, and the African and Asian species. Within the former clade, the sea snakes are shown to be diphyletic, with the laticaudines and hydrophiines having separate origins. This finding is corroborated by previous studies, which provide support for the usefulness of gene tree parsimony.  相似文献   

19.
Snake venoms contain a complex mixture of polypeptides that modulate prey homeostatic mechanisms through highly specific and targeted interactions. In this study we have identified and characterised cystatin-like cysteine-protease inhibitors from elapid snake venoms for the first time. Novel cystatin sequences were cloned from 12 of 13 elapid snake venom glands and the protein was detected, albeit at very low levels, in a total of 22 venoms. One highly conserved isoform, which displayed close sequence identity with family 2 cystatins, was detected in each elapid snake. Crude Austrelaps superbus (Australian lowland copperhead) snake venom inhibited papain, and a recombinant form of A. superbus cystatin inhibited cathepsin L ≅ papain > cathepsin B, with no inhibition observed for calpain or legumain. While snake venom cystatins have truncated N-termini, sequence alignment and structural modelling suggested that the evolutionarily conserved Gly-11 of family 2 cystatins, essential for cysteine protease inhibition, is conserved in snake venom cystatins as Gly-3. This was confirmed by mutagenesis at the Gly-3 site, which increased the dissociation constant for papain by 104-fold. These data demonstrate that elapid snake venom cystatins are novel members of the type 2 family. The widespread, low level expression of type 2 cystatins in snake venom, as well as the presence of only one highly conserved isoform in each species, imply essential housekeeping or regulatory roles for these proteins.  相似文献   

20.
Venomous snakebite is considered the single most important cause of human injury from venomous animals worldwide. Coagulopathy is one of the commonest important systemic clinical syndromes and can be complicated by serious and life-threatening haemorrhage. Venom-induced consumption coagulopathy (VICC) is the commonest coagulopathy resulting from snakebite and occurs in envenoming by Viperid snakes, certain elapids, including Australian elapids, and a few Colubrid (rear fang) snakes. Procoagulant toxins activate the clotting pathway, causing a broad range of factor deficiencies depending on the particular procoagulant toxin in the snake venom. Diagnosis and monitoring of coagulopathy is problematic, particularly in resource-poor countries where further research is required to develop more reliable, cheap clotting tests. MEDLINE and EMBASE up to September 2013 were searched to identify clinical studies of snake envenoming with VICC. The UniPort database was searched for coagulant snake toxins. Despite preclinical studies demonstrating antivenom binding toxins (efficacy), there was less evidence to support clinical effectiveness of antivenom for VICC. There were no placebo-controlled trials of antivenom for VICC. There were 25 randomised comparative trials of antivenom for VICC, which compared two different antivenoms (ten studies), three different antivenoms (four), two or three different doses or repeat doses of antivenom (five), heparin treatment and antivenom (five), and intravenous immunoglobulin treatment and antivenom (one). There were 13 studies that compared two groups in which there was no randomisation, including studies with historical controls. There have been numerous observational studies of antivenom in VICC but with no comparison group. Most of the controlled trials were small, did not use the same method for assessing coagulopathy, varied the dose of antivenom, and did not provide complete details of the study design (primary outcomes, randomisation, and allocation concealment). Non-randomised trials including comparison groups without antivenom showed that antivenom was effective for some snakes (e.g., Echis), but not others (e.g., Australasian elapids). Antivenom is the major treatment for VICC, but there is currently little high-quality evidence to support effectiveness. Antivenom is not risk free, and adverse reactions can be quite common and potentially severe. Studies of heparin did not demonstrate it improved outcomes in VICC. Fresh frozen plasma appeared to speed the recovery of coagulopathy and should be considered in bleeding patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号