首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
端锚聚合酶(Tankyrase)和端粒   总被引:3,自引:0,他引:3  
郑晓飞  吕星 《生命的化学》2000,20(6):241-242
端粒是真核细胞染色体末端的一个特殊结构 ,由一段具有特定重复序列的DNA和端粒结合蛋白组成 ,是维持染色体结构稳定的重要因素。端粒DNA的复制不是由DNA聚合酶完成的 ,而是由端粒酶 (telomerase)催化合成后添加到染色体的末端。正常细胞随着细胞分裂活动的进行 ,端粒DNA逐渐缩短 ,当缩短到一定程度时 ,染色体结构被破坏 ,细胞进入衰老期并以死亡而告终。但当细胞发生癌变时 ,由于端粒酶的重新激活 ,这种端粒DNA随分裂活动发生渐进性缩短的趋势受到阻遏 ,使正常细胞转化成具有无限分裂能力的永生化恶性细胞。研究…  相似文献   

2.
端粒是真核生物线性染色体末端的特殊结构,由端粒重复序列DNA和端粒结合蛋白组成,具有保护线性DNA末端、维持染色体稳定性等重要作用。随着细胞分裂次数的增加,端粒长度会逐渐缩短,最终引起细胞衰老或凋亡。端粒长度的维持对持续分裂的肿瘤细胞具有重要的意义。所以,端粒是肿瘤治疗的一个重要靶点,端粒长度维持机制及其相关靶向药物(端粒酶抑制剂、端粒延伸替代机制阻断剂、端粒G-四链体稳定剂以及端粒类似物T-oligo)的研究对于肿瘤治疗有着重要指导意义及临床应用价值。本文聚焦上述四个方向,对以端粒为靶点的抗肿瘤药物的最新研究进展进行综述。  相似文献   

3.
端粒、端粒酶与肿瘤   总被引:2,自引:0,他引:2  
端粒是真核细胞染色体末端含有 TTAGGG简单重复结构的复合体 ,它能防止染色体降解 ,端端融合 ,重组降解 ,因而有稳定染色体的作用。正常情况下 ,由于染色体复制的自身缺陷 ,细胞每分裂一次端粒要丢失 2 0~ 50 %碱基对 ,随着细胞分裂的增加 ,最终使细胞进入危机期 ,导致细胞死亡。端粒酶是一种 RNA、蛋白质的复合体 ,以 RNA为模板逆转录合成染色体末端的端粒 ,以维持染色体的稳定性。目前研究肿瘤组织细胞端粒酶活性高达 85~ 90 % ,而在正常组织细胞端粒酶活性较低。因此 ,端粒酶与肿瘤关系密切 ,端粒酶的研究成为国内外肿瘤的热点之…  相似文献   

4.
端粒及端粒酶的研究进展   总被引:13,自引:0,他引:13  
端粒是染色体末端独特的蛋白质-DNA结构,在保护染色体的完整性和维持细胞的复制能力方面起着重要的作用.端粒酶则是由RNA和蛋白质亚基组成的、能够延长端粒的一种特殊反转录酶.端粒长度和端粒酶活性的变化与细胞衰老和癌变密切相关.端粒结合蛋白可能通过调节端粒酶的活性来调节端粒长度,进而控制细胞的衰老、永生化和癌变.研制端粒酶的专一性抑制剂在肿瘤治疗方面有着广阔的前景.  相似文献   

5.
端粒、端粒酶结构功能研究进展   总被引:1,自引:0,他引:1  
端粒是真核生物线性染色体末端由重复DNA序列和蛋白质结合形成的复合结构,其特殊的环形结构与多种结合蛋白形成了端粒的多重功能的基础。端粒的功能包括染色体末端的保护、引导减数分裂的同源染色体配对、参与DNA修复过程等;端粒酶具有逆转录酶特性和维持端粒长度的功能,其活性与恶性肿瘤的发生密切相关,调控因子错综复杂。  相似文献   

6.
端粒是真核生物染色体末端的一种特殊结构,对于维持染色体稳定性具有十分重要的意义,端粒长度的维持则需要端粒酶催化完成,端粒的长短和端粒酶的功能异常与细胞衰老和癌变有密切关联。回顾了端粒与端粒酶的发现历程及研究意义。  相似文献   

7.
端粒,作为染色体末端的特殊结构,可以有效保护染色体,防止其降解、末端融合和重组。端粒酶是通过逆转录维持端粒长度的蛋白核酸复合体。二者共同构成了端粒-端粒酶系统。经过近30年的研究,人们发现该系统与人类健康密切相关。氧化应激可导致端粒结构与功能的改变。本文总结了影响端粒、端粒酶结构与功能的不同途径,并分析了氧化还原微环境和氧化应激对其的影响及对人类疾病的作用。  相似文献   

8.
DNA氧化性损伤与端粒缩短   总被引:10,自引:0,他引:10  
末端复制问题(the end replication problem)不能完全解释端粒在某些细胞分裂过程中迅速缩短的现象.40%的高压氧下细胞传代次数降低,端粒缩短速率增大,细胞出现衰老特征,端粒DNA上单链断裂积累.推测端粒缩短的主要原因在于衰老过程中或氧胁迫下端粒DNA单链断裂增多,使端粒末端单链片段在DNA复制时丢失.端粒酶和活性氧对端粒长度的正负调控作用的准确机制还有待于更深入的研究.  相似文献   

9.
端粒及端粒酶研究的最新进展   总被引:6,自引:0,他引:6  
胡建  覃文新  万大方  顾健人 《生命科学》2001,13(3):113-118,138
端粒是位于真核细胞染色体末端由重复DNA序列和蛋白组成的复合物,它具有保护染色体、介导染色体复制、引导减数分裂时的同源染爸体配对和调节细胞衰老等方面的作用。正常体细胞每分裂一代,端粒就会缩短一段,而端粒酶的作用是将一段端粒序列加到端粒末端,从而维持端粒长度。正常体细胞中是没有端粒酶活性的,而在大多数肿瘤细胞中都发现了端粒酶的表达,提示端粒和端粒酶在癌症发生和肿瘤细胞行为中具有重要作用。  相似文献   

10.
摘要:端粒是位于染色体末端的特殊核蛋白复合物,其高度保守的重复序列和蛋白复合物形成保护环结构,以维持线性染色体的稳定性和完整性。端粒酶通过添加富含鸟嘌呤的重复序列,在维持和调节端粒长度、细胞永生性和衰老中起着重要作用。通过研究病变细胞的端粒长度变化趋势和端粒酶活性,可为选择端粒酶作为治疗癌症的标记物提供理论参考。本文针对端粒、端粒酶的结构和日常作用机理,以及它们在肝细胞癌中的研究进展进行综述,以期有助于恶性肿瘤和代谢性疾病的预防、诊断和治疗。  相似文献   

11.
Telomeres are the special heterochromatin that forms the ends of chromosomes, consisting of TTAGGG repeats and associated proteins. Telomeres protect the ends from degradation and recombination, and are essential for chromosomal stability. Both a minimal length of telomere repeats and the telomere-binding proteins are required for telomere protection. Telomerase is a DNA polymerase that specifically elongates telomeres, in this way regulating telomere length and function. A minimal telomere length is required to maintain tissue homeostasis. On one hand, critically short telomeres trigger loss of cell viability and premature death in mice deficient for telomerase activity. Furthermore, altered functioning of telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and cancer. A new mouse model with critically short telomeres has been generated by over-expressing the TRF2 telomere-binding protein, K5-TRF2 mice. These mice show short telomeres in the presence of telomerase activity, leading to premature aging and increased cancer. Short telomeres in TRF2 mice can be rescued in the absence of the XPF nuclease, indicating that this enzyme rapidly degrades telomeres in the presence of increased TRF2 expression. K5-TRF2 mice represent a new tool to understand the consequences of critical telomere shortening a telomerase-proficient genetic background, more closely resembling human cancer and aging pathologies.  相似文献   

12.
Hug N  Lingner J 《Chromosoma》2006,115(6):413-425
  相似文献   

13.
Blasco MA 《The EMBO journal》2005,24(6):1095-1103
Telomeres are capping structures at the ends of eukaryotic chromosomes, which consist of repetitive DNA bound to an array of specialized proteins. Telomeres are part of the constitutive heterochromatin and are subjected to epigenetic modifications. The function of telomeres is to prevent chromosome ends from being detected as damaged DNA. Both the length of telomere repeats and the integrity of the telomere-binding proteins are important for telomere protection. Telomere length is regulated by telomerase, by the telomere-binding proteins, as well as by activities that modify the state of the chromatin. Various mouse models with altered levels of telomerase activity, or mutant for different telomere-binding proteins, have been recently generated. Here, I will discuss how these different mouse models have contributed to our understanding on the role of telomeres and telomerase in cancer and aging.  相似文献   

14.
Telomeres are capping structures at the ends of chromosomes, composed of a repetitive DNA sequence and associated proteins. Both a minimal length of telomeric repeats and telomere-associated binding proteins are necessary for proper telomere function. Functional telomeres are essential for maintaining the integrity and stability of eukaryotic genomes. The capping structure enables cells to distinguish chromosome ends from double strand breaks (DSBs) in the genome. Uncapped chromosome ends are at great risk for degradation, recombination, or chromosome fusion by cellular DNA repair systems. Dysfunctional telomeres have been proposed to contribute to tumorigenesis and some aging phenotypes. The analysis of mice deficient in telomerase activity and other telomere-associated proteins has allowed the roles of dysfunctional telomeres in tumorigenesis and aging to be directly tested. Here we will focus on the analysis of different mouse models disrupted for proteins that are important for telomere functions and discuss known and proposed consequences of telomere dysfunction in tumorigenesis and aging.  相似文献   

15.
Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.  相似文献   

16.
17.
The ends of human chromosomes are protected by DNA–protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA.  相似文献   

18.
19.
Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase–telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC‐based DNA–protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere‐binding protein 1 (HOT1). HOT1 directly and specifically binds double‐stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase‐dependent telomere elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号