首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on a study of the larvae from two helminth species parasitizing the crab Cyrtograpsus angulatus Dana, 1851 (Microphallus szidati Martorelli, 1986 and Falsifilicollis chasmagnathi Holcman-Spector et al., 1977), from Mar chiquita lagoom (Argentina) together with the analyses of their life cycles and rates of prevalence, intensity and association coefficient (compared in definitive and intermediate host) the following conclusions have been reached: a) C. angulatus suns to be an excellent intermediate host in the life-cycles of the studied helminths; b) the size of the crabs and the occurrence of natural amputations in the females (Spivak & Politis, in press) appeared correlated with prevalence; c) in the studied crabs the prevalence for F. chasmagnathi is higher in males than in females; d) the intensity did not appear correlated with size and sex of the intermediate host; e) M. szidati and F. chasmagnathi are closely associated with the intermediate host; f) C. angulatus and Himantopus melanurus Vieillot, 1817 (Aves; Recurvirostridae) are reported as new intermediate and definitive hosts, respectively, for F. chasmagnathi; g) Chasmagnathus granulata Dana, 1851 (Crustacea; Brachyura) is reported as a new intermediate host for M. szidati.  相似文献   

2.
In predator–prey relationships such as those between crabs and their bivalve prey, interference competition is a topic of intense investigation as it can have profound consequences on the dynamics of both predator and prey populations. However in laboratory experiments – also those on crab–bivalve systems – workers never adequately disentangled interference competition from exploitative competition, as prey depletion was never compensated. Hitherto, experimental studies on crab–bivalve systems lack direct behavioural observations and have provided only indirect and thus inconclusive evidence of interference competition. We studied interference competition in adult male shore crabs Carcinus maenas that foraged on blue mussels Mytilus edulis. We developed a novel type of experimental tank to replenish each consumed mussel, and thus to keep prey levels constant. We conducted two experiments in which we varied number of crabs (1, 2, 4) and number of mussels (first experiment: 4, 8, 16, 32; second experiment: 8, 32, 128) and directly observed the foraging behaviour of crabs (foraging area=0.25 m2). In the first experiment, feeding rates decreased with increasing crab density only at mussel density 16 because both search time and time spent in agonistic interactions increased. At other mussel densities, variation in crab density did not affect feeding rates, possibly because of low statistical power and the narrow range of mussel densities offered. In the second experiment feeding rates decreased with increasing crab density because crabs spent more time in agonistic interactions and handling their prey. Feeding rates increased with increasing mussel density. Overall, crabs spent on average 14–18% of their foraging time in agonistic behaviours, while on three out of 64 occasions feeding rates decreased because mussels were stolen (kleptoparasitism). Concluding, we have shown that interference competition occurs in absence of prey depletion, while conducting direct behavioural observations aid to identify the behavioural processes that underlie interference competition.  相似文献   

3.
The effects of competitor pressure and prey odor on foraging behavior of the rock crab, Cancer irroratus (Say), were investigated. The Jonah crab, Cancer borealis (Stimpson), was chosen as the interspecific competitor because it shares resources with C. irroratus. Four treatments were tested for their effect on foraging: the presence or absence of a competitor and two types of prey odor; body odor (living mussel) and tissue extract (dead mussel tissue). The presence of Jonah crabs did not influence location time, search time, prey size selected, or handling time of the rock crabs. However, rock crabs responded differently to the presence of body odor and tissue extract cues. The presence of extract odor decreased the time to locate prey while increasing the number of prey manipulated and prey size selected. When prey body odor was present, rock crabs displayed less investigative behaviors than in the presence of extract odor, illustrated by reduced location time. Extract odor provided a stronger and more attractive cue than body odor, but increased prey manipulation and search time. Extract odor induced increases in manipulation and searching for prey but canceled out the benefits of decreased location time, resulting in crabs from both treatments displaying similar search times. These elevated behaviors may be associated with foraging for injured and cracked prey or may indicate an area of conspecific feeding.  相似文献   

4.
The purpose of this study was to test the hypothesis that foraging sand fiddler crabs. Uca pugilator (Bosc), move through the habitat in response to low substratum food levels even though these movements may take the crabs considerable distances from the safety of the burrow area. Chl a and ATP concentrations were used as measures of food density in foraged and unforaged substratum. Field and laboratory feeding experiments showed that crab foraging intensity in a habitat patch was directly correlated with food density in the patch either in the presence or absence of alternative food patches. Other experiments showed that sand fiddlers can respond to differences in food level on a scale of millimeters and do this by probing the substratum with minor chelae. Food levels in aggregations of non-ingested particles harvested by sand fiddlers, feeding pellets, correspond to low foraging intensities predicted from foraging experiments and crabs exhibit low foraging intensities on substratum patches derived from feeding pellets. Substratum food levels in two distinct areas corresponded to high predicted foraging intensities and there was no consistent trend in the level of food in the burrow vs. the nonburrow microhabitats. These results suggest that the movements of foraging sand fiddlers are to some extent controlled by the reduction in substratum food levels due to feeding during a single foraging episode. Sand fiddlers can extract over 70% of the food from harvested substratum over a broad range of substratum food densities but harvest only 42% of the available substratum.  相似文献   

5.
Optimal Diet Theory suggests that individuals make foraging decisions that maximise net energy intake. Many studies provide qualitative support for this, but factors such as digestive constraints, learning, predation-risk and competition can influence foraging behaviour and lead to departures from quantitative predictions. We examined the effects of intraspecific competition within a classic model of optimal diet – the common shore crab, Carcinus maenas, feeding on the mussel, Mytilus edulis. Unexpectedly, we found that breaking time (Tb), eating time (Te), and handling time (Th) all decreased significantly in the presence of a conspecific. Reduced handling time in the presence of a competitor resulted in an increased rate of energy intake, raising the question of why crabs do not always feed in such a way. We suggest that the costs of decreased shell breaking time may be increased risk of claw damage and that crabs may be trading-off the potential loss of food to a competitor with the potential to damage their claw whilst breaking the shell more rapidly. It is well documented that prey-size selection by crabs is influenced by both the risk of claw damage and competition. However, our results are the first to demonstrate similar effects on prey handling times. We suggest that crabs maximise their long-term rate of energy intake at a scale far greater than individual foraging events and that in order to minimise claw damage, they typically break shells at a rate below their maximum. In the presence of a competitor, crabs appear to become more risk-prone and handle their food more rapidly, minimising the risk of kleptoparasitism.  相似文献   

6.
This study investigated the role of the American oystercatcher (Haematopus palliatus) as a resource subsidizer for the scavenger snail Buccinanops globulosum in a northern Patagonian bay (40°45′S, 64°56′W, San Antonio Bay, Argentina). The most frequent food item for the snails was dead crabs Cyrtograpsus angulatus Dana, and the snails preferred this item. In the field, most dead crabs (78%) resulted from oystercatcher predation. Field densities of dead crabs were within the 95% confidence limits of the estimated densities produced by oystercatcher foraging activity, suggesting that a large proportion of carrion available for snails is a byproduct of oystercatcher predation. Dead crabs with injuries were more rapidly detected and consumed by snails, probably because injuries produced by oystercatchers increase leakage of body fluids and facilitate penetration of the proboscis of the snails. Our results suggest that oystercatcher predation subsidize this scavenger snail by increasing availability of food, decreasing variability in their provision and facilitating their consumption.  相似文献   

7.
Understanding the behavioural mechanisms that underlie prey size preference of predators is an essential component of unravelling the processes that govern predator-prey dynamics. In marine systems, despite being able to consume larger and more profitable prey, many molluscivorous predators show a preference for smaller, less profitable prey, most likely to minimize the risk of damaging feeding extremities. Here we assessed the flexibility of this prey size preference. We observed that shore crabs (Carcinus maenas) that were food deprived, and which were offered mussels (Mytilus edulis) of different sizes in dichotomous preference tests, preferred smaller, less profitable mussels. The same result was observed for crabs foraging with a conspecific competitor. Only crabs that were conditioned to feed on the larger, most profitable mussels shifted their prey size preference and ranked the most profitable mussels as highest. Although shore crabs showed flexibility in prey size preference, through which they would be able to cope with environmental variability, our results in general emphasize preference for smaller prey. We discuss the possibility that crabs maximize their long-term feeding rate, in which case it can be optimal to select these smaller mussels.  相似文献   

8.

Foraging rate was highly variable among shore crabs of the same size category and for individual crabs from day to day. Possible physiological reasons for this variability are discussed. Shore crab foraging rate, both in terms of mussels eaten per day and energy intake per day, was estimated to be higher at 17°C than at 10°C. The shape of diet curves and their mode for male shore crabs at 17°C closely resembled those for 10°C, indicating that the temperature increase had no effect on their previously demonstrated optimal foraging strategy.

Female and certain male shore crabs showed a preference for prey smaller than for other equivalent sized males. These suboptimally feeding male and female crabs attained a relatively higher prédation rate (mussels day‐1), although their energy intake (KJ day‐1) remained lower than that of optimally feeding males. Preferred mussel size, number of mussels eaten per day and energy intake were strongly related to master chela height. The diet curves for female and suboptimally feeding male shore crabs could be explained by these crabs’ proportionately smaller master chelae.  相似文献   

9.
Fiddler crabs are key bioturbators on tidal flats. During their intense bioturbation process, they manipulate large amounts of sediment, altering the physical state of existing materials. We investigated whether different types of sediment bioturbation produced by fiddler crabs modulate meiofaunal assemblages and microphytobenthic content. We hypothesized that sedimentary structures produced by burrowing (the burrow itself and the excavation pellets) and feeding (feeding pellets) generate different microenvironments compared with areas without apparent signs of fiddler crab disturbance, affecting both meiofauna and microphytobenthos, independent of the sampling period. Our results indicate that the engineering effects of burrow construction and maintenance and the engineering effects of fiddler crab foraging modulate meiofaunal assemblages in different ways. Overall, meiofauna from burrows and excavation pellets was more abundant and diverse than at control sites, whereas feeding pellets contained poor meiofaunal assemblages. By contrast, only foraging effects were detected on microphytobenthos; independent of the sampling period, Chl a and phaeopigment content were higher in the feeding pellets, but similar among burrows, excavation pellets and control sites. The present study demonstrates that the different engineering effects of fiddler crabs are an important source of habitat heterogeneity and a structuring agent of meiofaunal assemblages on subtropical tidal flats.  相似文献   

10.
Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities.  相似文献   

11.
Activity patterns, feeding and burrowing behaviour of the economically important semi-terrestrial mangrove crab Ucides cordatus (Ucididae, L. 1763) was studied in a high intertidal Rhizophora mangle forest stand in Bragança, North Brazil. Video observations in the rainy and dry season were conducted over 24 h cycles at different lunar phases to investigate the behaviour of these litter-feeding crabs outside their burrows. During the rainy season, crabs stayed inside their burrows for 79% and 92% of the time during day and night, respectively. Time spent for feeding, burrowing and other activities outside their burrows was significantly longer during the day with 9.9% (night: 1.7%) and at waning and waxing moon with 9% (full and new moon: 0.9%). At neap tides (no tidal inundation) foraging and feeding activities outside burrows were clearly light-dependent, increasing at dawn and decreasing at dusk. Highest activities during daytime relate to the visual localisation of food. During the dry season, crabs spent less time inside burrows at neap tides than during the rainy season (80% and 91%, respectively). However, time spent for feeding activities was similar during both seasons. During almost all observation periods crabs collected leaf litter, but rarely fed on it outside burrows. At neap tides nearly all available litter was collected, suggesting that the U. cordatus population is litter-limited during these times. At spring tides (regular tidal inundation) the surface activity of U. cordatus was tide-dependent. Crabs closed their burrow entrances 2-3 h before flooding and re-emerged as soon as the tide retreated. During the day, burrow maintenance was the second most frequent behaviour after feeding. Agonistic interactions were regularly observed and were mainly related to burrow defence. The mean foraging radius of the crabs was only 19 cm (max: 1 m) underneath high Rhizophora mangle trees where crab densities were high. The results point to a high competition for burrows and show that U. cordatus is territorial. It is concluded that several exogenous factors, in particular light, leaf litter availability, flooding of burrows and the presence of conspecifics are important in controlling the crabs' activity patterns.  相似文献   

12.
There are conflicting reports as to whether Ocypode gaudichaudii individuals switch from carnivory as juveniles to deposit‐feeding primarily on diatoms as adults, or whether they expand diet range and become omnivorous with maturity. At the onset of deposit‐feeding, crabs develop specialized claws with truncated ends that they use to shovel sediment during foraging. Eighty‐eight crabs were collected from Culebra Island (Republic of Panama) to study how the diet of this crab shifts with changes in claw shape, mouthpart proportions, and setation, as well as gastric mill width. Forty‐four crabs had identifiable material in their foreguts: 30 had animal material, 12 had diatoms, and two had a mix of both. There were no differences between the gastric mill, mandibles, and the proximal endites of the first maxillipeds of predators and deposit‐feeders, but extra rows of plumose setae were present on the second maxilliped of deposit‐feeding crabs with carapace length (CL) >10.6 mm. All individuals with CL <12.3 mm and non‐truncated claws ate animals, but those with larger CL and truncated claws had animal, diatom, or mixed diets; hence, claw truncation does not restrict the crab's diet to diatoms but, instead, broadens the diet to include both animals and diatoms. Perhaps this is a strategy to balance the economics of foraging on animals and diatoms on medium to low‐energy beaches that lack the larger invertebrates that adults of other species of ghost crabs eat. More generally, our study shows that specialized feeding structures need not imply a narrow or specialist diet.  相似文献   

13.
Recent population declines of seed-eating farmland birds have been associated with reduced overwinter survival due to reductions in food supply. An important component of predicting how food shortages will affect animal populations is to measure the functional response, i.e. the relationship between food density and feeding rate, over the range of environmental conditions experienced by foraging animals. Crop stubble fields are an important foraging habitat for many species of seed-eating farmland bird. However, some important questions remain regarding farmland bird foraging behaviour in this habitat, and in particular the effect of stubble on farmland bird functional responses is unknown. We measured the functional responses of a seed-eating passerine, the Chaffinch Fringilla coelebs , consuming seeds placed on the substrate surface in three different treatments: bare soil, low density stubble and high density stubble. Stubble presence significantly reduced feeding rates, but there was no significant difference between the two stubble treatments. Stubble reduced feeding rates by reducing the maximum attack distance, i.e. the distance over which an individual food item is targeted and consumed. The searching speed, handling time per seed, proportion of time spent vigilant, duration of vigilance bouts and duration of head-down search periods were unaffected by the presence of stubble. The frequency of vigilance bouts was higher in the bare soil treatment, but this is likely to be a consequence of the increased feeding rate. We show the influence of a key habitat type on the functional response of a seed-eating passerine, and discuss the consequences of this for farmland bird conservation.  相似文献   

14.
Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism''s ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour.  相似文献   

15.
Predators play an important role in structuring assemblages through direct and cascading indirect effects. While there has been recent interest in how the strength and direction of trophic cascades vary spatially, seasonal variability in trophic links is seldom considered. In North Carolina, recruitment-failure of bay scallops typically occurs following the spring but not the fall spawning despite the presence in each of these seasons of predatory blue crabs. One explanation for this pattern is that in the fall, seasonally abundant predators of blue crabs reduce the foraging efficiency of crabs on scallops and thus the overall magnitude of top-down effects. Quantification of bay scallop consumption by blue crabs in closed mesocosms with or without pinfish supported the hypothesis that seasonally abundant adult pinfish indirectly increase survivorship of bay scallop recruits in fall by reducing predation by blue crabs. Despite voracious consumption of bay scallops during both the day and night in mesocosms to which only small blue crabs were added, blue crabs in mesocosms with visually-foraging adult pinfish consumed bay scallops only by night. Juvenile pinfish that dominate estuarine populations in spring did not impede consumption of bay scallops by blue crabs. In mesocosms from which animals could not emigrate, the addition of neither adult nor juvenile pinfish increased the mortality of blue crabs, indicating a behaviorally mediated interaction. Blue crabs restricted by adult pinfish to nocturnal feeding did not compensate for lost feeding time by increasing their night-time consumption of bay scallops. These results strongly suggest that greater survivorship of bay scallops in fall than spring is due to adult pinfish, potential predators of small blue crabs, restricting blue crab foraging to hours of dark. In spring, when pinfish are small and incapable of consuming blue crabs, blue crabs consume bay scallops by day and by night. Such seasonal variation in the number of trophic links in a system may have important evolutionary implications. By timing reproduction to occur in fall when the pinfish-crab-scallop cascade is in operation, bay scallops maximize recruitment.  相似文献   

16.
Water depth requirements, diet, feeding styles and diurnal activity patterns are described for waterbirds using two brackish water lagoon systems in coastal Ghana, the Songor and Keta Lagoons. We project the habitat and activity data on a guild structure defined on the basis of individual feeding style and the sensory mechanism used to detect food. A total of 3199 flocks containing 118,648 individuals of 36 different waterbird species were examined during October-November 1994. Feeding habitats varied from dry mudflats to wet mud and shallow water of not more than 20 cm. The depth of water selected by waterbirds for foraging (but not for roosting) was correlated with tarsus length. Foraging birds exhibited a wide range of feeding styles using visual and/or tactile means for detecting prey: pecking, probing, stabbing, sweeping and ploughing, sometimes feeding singly, communally or socially in loose or dense flocks. Prey items taken ranged from seeds of Widgeongrass Ruppia maritima to invertebrates (mainly polychaetes, molluscs and crabs) and fish, mainly juvenile Tilapia. The daytime was spent on two main activities, feeding and roosting, with a small fraction of the time (average of 10% for 25 species) spent on comfort activities. The waterbirds exhibited either a circadian (most waders, except Common Sandpipers Actitis hypoleucos and Turnstones Arenaria interpres) or a diurnal foraging activity pattern (herons and terns), with no purely nocturnal species. Some species fed throughout the day, others showed peak foraging at various times of the day. The proportion of time spent foraging was related to guild (highest in visual and tactile surfaceforaging waders) and was negatively correlated with the size of the species. We conclude that the observed patterns in the use of the 24-h day by waterbirds for foraging are not species specific but vary depending on conditions on the feeding grounds. Nocturnal foraging is a normal and a regular strategy used by waterbirds to obtain enough food to fulfill their energetic requirements, so that irrespective of the sensory mechanism used to detect prey and the conditions prevailing on the feeding grounds, waterbirds forage day and night as dictated by their energetic needs. Water depth appears to be the key environmental factor controlling the availability of food for the waterbirds in the Ghanaian lagoons.  相似文献   

17.
The intertidal hermit crab, Pagurus longicarpus, apparently utilizes material found in detrital foam floating on the surface of the water. In surface feeding, this species employs a behavior pattern quite different from its normal mode of feeding. This behavior, in conjunction with a highly opportunistic foraging strategy, enables the hermit crabs quickly to locate and utilize this unpredictable resource.  相似文献   

18.
The prey species composition and feeding rate of the pit-making ant lion larva,Myrmeleon bore Tjeder, which inhabits open sandy areas, were examined. Not less than 30 prey species, most of which were ants, were collected during a research period of 1.5 years. First instar larvae most often (81.1%) captured ants. Although 3rd instar larvae captured larger-sized prey than individuals of any other instar, they also captured small prey. The feeding rate of 3rd instar larvae was estimated by using the frequency of observed predation (FOP; (no. of ant lions handling a prey)/(total no. of pits observed)), the prey-handling time and the rhythm of daily foraging activity. FOP ofM. bore larvae was constant on the whole from spring to autumn. It was estimated that each captured 1.25 prey per day on average during this period. This estimate, however, was the feeding rate for days on which there was no rain. Assuming that the larvae cannot capture prey due to pit destruction when there is more than 10 mm of rainfall per day, the figure was reduced to 1.03 prey/day. The estimated feeding rate was evaluated with reference to larval foraging behavior.  相似文献   

19.
Birds frequently interrupt feeding to scan their surrounding environment. Usually an inverse correlation between scan rate and flock size exists. The 'many-eyes' hypothesis suggests that more eyes are able to detect a predator earlier. Due to the 'dilution-effect' animals in larger groups experience 'safety in numbers', while the 'scramble competition' hypothesis suggests that individuals reduce their vigilance in larger groups since they compete for a limited amount of scarce resources. Here, I induced competition in natural coot populations. Coots preferred feeding on grass and were occasionally fed by passers-by at the study sites. However, this resource was scarce and coots experienced additional food as a very limited resource. I sampled coots prior and after an experimental treatment with an additional food supply. Correlations between vigilance rate (number of scans during 1 min of foraging), nearest neighbor distance and flock size existed before the experimental treatment but afterwards the correlation between vigilance and nearest neighbor distance faded. I found a significantly lower vigilance rate and nearest neighbor distance after inducing competition. This study provided experimental evidence for the 'scramble competition' hypothesis namely that individuals in groups lowered their vigilance when faced with competition for a limited amount of food resources given similar flock sizes.  相似文献   

20.
We observed two capuchin monkeys (Cebus capucinus) feeding on hermit crabs (Coenobita compressus) on the coast, and the tactics they used to extract this well-protected prey. The observations took place during the dry season at Playa Escondida beach, Puntarenas, Costa Rica. The capuchins descended from trees at the back edge of the beach to capture passing hermit crabs. Both capuchins extracted the hermit crabs from their protective shells by holding the shell with one hand and pulling the crab out with the other. Even though this was accomplished within seconds, the extraction of hermit crabs from their shells did not appear to be a straightforward task. Once the capuchins succeeded in pulling the crabs out of their shells, they consumed the soft abdomen and discarded the rest of the crab's body. To our knowledge, the consumption of hermit crabs has not been previously reported for any capuchin monkey (Cebus or Sapajus). Our observations provide a new example of extractive foraging by capuchins, and thus an additional natural context for which fine motor skills (which are highly developed in capuchins) are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号