首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Sulfur (S) deficiency in soils and plants has been increased in the recent decade which is reducing crop yield and quality. Unfortunately, no extensive study has been conducted on S nutritional status of plants in Turkey. In this study, soil and plant samples were collected from Çukurova, Central Anatolia and GAP regions where wheat is extensively cultivated. Plant samples either as flag leaf or the whole shoot were collected depending on growth stage of wheat crop at sample collection. Similarly, surface (0–20 cm) and sub-surface (20–40 cm) soil samples were collected from plant sampling sites and a total 963 plant and 1947 soil samples were collected during the study. The S concentration in flag leaf samples varied between 0.18 and 0.67%, 0.11–0.59% and 0.17–0.82% for central Anatolia, Çukurova and GAP regions, respectively. According to S concentration in flag leaf samples, 99% of the plants in Çukurova region were found sufficient in S nutrition. However, 49% of the samples collected from central Anatolia and GAP regions were deficient in S. Critical N:S ratio indicating S nutrition status of plants was lower than the widely accepted critical value of 17. This low N:S ratio was a consequence of deficient N nutrition rather than S nutrition. Moreover, it was observed that plant available SO4-S concentration of soils varied within and among sampled provinces with an average value of 20.6 and 31.6 mg kg?1 for surface and sub-surface samples, respectively. The SO4-S concentration increased with increasing soil depth. The results indicate a significantly positive correlation between S concentration in plant shoot and plant available SO4-S concentration in soils. In conclusion, S-containing fertilizer use in central Anatolia and GAP regions must be considered as an important approach for the prevention of yield and quality losses. Furthermore, rapid and sensitive plant and soil analysis methods are needed, which must also consider the local and site-specific conditions.  相似文献   

2.
Rendig  V. V.  Oputa  C.  McComb  E. A. 《Plant and Soil》1976,44(2):423-437
Summary The concentrations of several N fractions, soluble sugars and N/S ratios were determined in Golden Bantam sweet corn and hybrid field corn grown in nutrient solutions and/or soil with various SO4-S levels provided. When the level of SO4-S supplied was less than that needed for maximum growth, higher-than-normal concentrations of amide (asparagine) N and lower-than-normal soluble sugar concentrations were found in the plants. An inadequate S supply appears to limit the plants capacity to synthesize protein to a much greater extent than it inhibits the nitrogen uptake mechanism.Total N/total S ratios (grammole basis) varying from over 100 to less than 15 were found in plants grown with different levels of sulfate supplied. When SO4-N, NO3-N, and the large amount of amide-N which accumulates under conditions of S deficiency are excluded, the ratio in young corn plants is generally between 22–50. The precision of the N/S ratio as an indicator of S adequacy for growing crops might be improved by a better understanding of the nature of the forms in which N and S occur in plants, and the effects of soil and plant factors other than S level. The percentage of amide-N shows promise as an indicator of S nutrient status. Data available indicates that added S will increase yields of corn plants if their amide-N level exceeds 500 ppm. Amide-N concentration correlates with N/S ratios, and it is much more readily determined than the latter. Its usefulness as a S nutrition indicator should be checked under field conditions.  相似文献   

3.
Cement factory emissions into air cause serious air pollution and affect the plant and animal life in the environment. Herein, we report the effects of cement industry emissions (O3, SO2 and NO2) in air, as pollutants, at Riyadh City on Datura innoxia Mill. plant. Morphological characters including plant height, leaves area and number, fresh and dry weight of shoot and root systems of D. innoxia showed a significant reduction from their normal control plants as a response to exposure to pollutant emissions. Chlorophyll and carotenoid contents recorded reductions in values compared to control plant, and the lowest values of chlorophyll A, B, total chlorophyll, carotenoids and total pigments were 0.431, 0.169, 0.60, 0.343 and 0.943 mg/g respectively at a distance of 1–5 m from the cement factory in fruiting stage. These changes in values may be attributed to a probable deceleration of the biosynthetic process rather than degradation of pigments. Further D. innoxia showed a significant (P < 0.01) reduction in non-reducing and total sugars, protein and total lipid contents compared with the control plant. The root system recorded the lowest values of reducing sugars (0.350 mg/g f. wt.), non-reducing sugars (0.116 mg/g f. wt.), total sugars (0.466 mg/g f. wt.), protein content (0.931 mg/g f. wt.) and total lipids content (0.669 mg/g f. wt.) in fruiting stage at a distance of 1–5 m from the cement factory. The peroxidase activity of shoot and root systems of the studied plant was also significantly higher than those of control plant. Thus a highest value of (29.616 units/g f. wt.) peroxidase activity was recorded in vegetative stage of shoot system at a distance 1–5 m from the cement factory. Results of the study indicated that cement industry emission strongly influence the physiology and morphology of date palm D. innoxia which contribute date fruits, a staple food in the Arab world.  相似文献   

4.
The proportion of total sulphur lost during combustion (600 °C) of Douglas-fir (Pseudotsuga menziesii) foliage is reduced from> 90% to 65–70% as the SO4-S concentration increases from 10% to 45–50% of the total S content. Foliar SO4-S content is decreased by improvement of plant nitrogen status, suggesting that alterations to soil N availability may influence S transfer to the atmosphere during biomass burning.  相似文献   

5.

Background and Aims

Elucidating the stoichiometry and resorption patterns of multiple nutrients is an essential requirement for a holistic understanding of plant nutrition and biogeochemical cycling. However, most studies have focused on nitrogen (N) and phosphorus (P), and largely ignored other nutrients. The current study aimed to determine relationships between resorption patterns and leaf nutrient status for 13 nutrient elements in a karst vegetation region.

Methods

Plant and soil samples were collected from four vegetation types in the karst region of south-western China and divided into eight plant functional types. Samples of newly expanded and recently senesced leaves were analysed to determine concentrations of boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), N, sodium (Na), P, sulphur (S) and zinc (Zn).

Key Results

Nutrient concentrations of the karst plants were lower than those normally found in other regions of China and the rest of the world, and plant growth was mainly limited by P. Overall, four nutrients revealed resorption [N (resorption efficiency 34·6 %), P (48·4 %), K (63·2 %) and Mg (13·2 %)], seven nutrients [B (–16·1 %), Ca (–44·0 %), Cu (–14·5 %), Fe (–205·5 %), Mn (–72·5 %), Mo (–35·6 %) and Zn (–184·3 %)] showed accumulation in senesced leaves and two nutrients (Na and S) showed no resorption or accumulation. Resorption efficiencies of K and Mg and accumulation of B, Ca, Fe and Mn differed among plant functional types, and this strongly affected litter quality. Resorption efficiencies of N, P and K and accumulation of Ca and Zn increased with decreasing concentrations of these nutrients in green leaves. The N:P, N:K and N:Mg ratios in green leaves predicted resorption proficiency for N, K and Mg, respectively.

Conclusions

The results emphasize the fact that nutrient resorption patterns strongly depend on element and plant functional type, which provides new insights into plant nutrient use strategies and nutrient cycling in karst ecosystems.  相似文献   

6.
An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2–3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their quantitative and qualitative improvements.  相似文献   

7.
Nitrogen (N) serves as an important mineral element affecting plant productivity and nutritional quality. However, few studies have addressed the interactive effects of elevated CO2 and precipitation change on leaf N of dominant grassland genera such as Stipa L. This has restricted our understanding of the responses of grassland to climate change. We simulated the interactive effects of elevated CO2 concentration and varied precipitation on leaf N concentration (Nmass) of four Stipa species (Stipa baicalensis, Stipa bungeana, Stipa grandis, and Stipa breviflora; the most dominant species in arid and semiarid grassland) using open-top chambers (OTCs). The relationship between the Nmass of these four Stipa species and precipitation well fits a logarithmic function. The sensitivity of these four species to precipitation change was ranked as follows: S. bungeana S. breviflora > S. baicalensis S. grandis. The Nmass of S. bungeana was the most sensitive to precipitation change, while S. grandis was the least sensitive among these Stipa species. Elevated CO2 exacerbated the effect of precipitation on Nmass. Nmass decreased under elevated CO2 due to growth dilution and a direct negative effect on N assimilation. Elevated CO2 reduced Nmass only in a certain precipitation range for S. baicalensis (163–343 mm), S. bungeana (164–355 mm), S. grandis (148–286 mm), and S. breviflora (130–316 mm); severe drought or excessive rainfall would be expected to result in a reduced impact of elevated CO2. Elevated CO2 affected the Nmass of S. grandis only in a narrow precipitation range. The effect of elevated CO2 reached a maximum when the amount of precipitation was 253, 260, 217, and 222 mm for S. baicalensis, S. bungeana, S. grandis, and S. breviflora, respectively. The Nmass of S. grandis was the least sensitive to elevated CO2. The Nmass of S. breviflora was more sensitive to elevated CO2 under a drought condition compared with the other Stipa species.  相似文献   

8.
The hypothesis that SO4 desorption can explain apparent long term net SO4-S losses (5 kg·ha–1·yr–1 on average) at the Lake Laflamme catchment from 1982 to 1991 is examined. Field observations show that SO4 concentrations in the soil solution are strongly buffered during percolation through the Bf horizon. In the Bf horizon, SO4 exchange reactions between the adsorbed and aqueous compartments are rapid (hours). Most (60%) of the adsorbed SO4 may be readily desorbed with deionized water. These observations and the presence of an important adsorbed SO4-S reservoir in the Bf horizon (113 kg·ha–1) as compared with annual wet SO4-S deposition (7 kg·ha–1), suggest that on the short-term, adsorption and desorption reactions can control dissolved SO4 concentration in the Bf horizon. To examine whether SO4 adsorption/desorption could explain long-term SO4-S losses by the catchment, an aggregated Langmuir isotherm for the Bf horizon was used to calculate the catchment's resilience to changing SO4-S loads. The results indicate that the soil should adjust rapidly (within 4 years) to changing SO4-S loads and that SO4 desorption alone cannot explain long-term net SO4-S losses. Other possibilities, such as an underestimation of dry deposition or the weathering of S-bearing minerals also appear unlikely. Our results suggest a net release of SO4-S from the soil organic S reservoirs (1230 kg·ha–1) present in the catchment.  相似文献   

9.
10.
Experiment was carried out to determine the effect of Sclerotinia sclerotiorum on the disease development, growth, oil yield and biochemical changes in the plants of Mentha arvensis. With the increase in initial inoculum levels of S. sclerotiorum a corresponding decrease in plant fresh and dry weights were recorded. The maximum reduction in the shoot-roots/suckers fresh weight and shoot-roots/suckers dry weights (39.8%, 43.6%, 40.3% and 42.9%), respectively, was observed at the highest initial inoculum level of 12 g fungal mycelium/5 kg soil as compared to uninoculated control. The infection of roots and suckers due to S. sclerotiorum increased with increasing initial inoculum levels. At the lowest initial inoculum (1.0 g mycelium/5 kg soil), infection was observed 18.0% and at the highest (12 g mycelium/5 kg soil), it was 80.2%. Significant (P ⩽ 0.01) reduction in oil yield, total chlorophyll, total phenol and total sugar content of M. arvensis plants was observed at the lowest inoculum level as compared to uninoculated control.  相似文献   

11.
An efficient callus induction and plant regeneration system has been standardized for an ethnomedicinal plant, Elephantopus scaber Linn. Two explants i. e. seeds and leaf segments were used for callus induction. Murashige and Skoog (MS) medium supplemented with 5.0 μM 2, 4-dichlorophenoxy acetic acid (2, 4-D) and 0.5 μM kinetin (Kn) gave the optimum frequency (89 %) of callus induction from seed explant. The results showed that the highest response in terms of percent callus regenerating (91 %) and number of shoots (56) per culture was recorded on MS medium supplemented with 6.0 μM N6-benzylaminopurine (BA) and 1.5 μM α naphthalene acetic acid (NAA). The best rooting of regenerated shoots was obtained on half strength MS medium supplemented with 6.0 μM indole-3- butyric acid (IBA). On this medium, 100 % of the shoots produced roots with a mean number of 3.2 roots per shoot. The positive role of vesicular arbuscular mycorrhizae (VAM) along with potting mix has been well established in the present study. Of the various potting mix employed for plant acclimatization, the highest response of 100 % plant survival was noticed when autoclaved garden soil, sand (2:1) and VAM was utilized as potting mix. Inter-simple sequence repeats (ISSR) were used to establish the clonal fidelity of regenerated plantlets and the banding profiles from callus derived plants were monomorphic and similar to those of mother plant, thus ascertaining the true-to-type nature of these plants.  相似文献   

12.
13.
An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China.  相似文献   

14.
Nitrate (NO3) and ammonium (NH4+) are the main forms of nitrogen available in the soil for plants. Excessive NH4+ accumulation in tissues is toxic for plants and exclusive NH4+-based nutrition enhances this effect. Ammonium toxicity syndrome commonly includes growth impairment, ion imbalance and chlorosis among others. In this work, we observed high intraspecific variability in chlorophyll content in 47 Arabidopsis thaliana natural accessions grown under 1 mM NH4+ or 1 mM NO3 as N-source. Interestingly, chlorophyll content increased in every accession upon ammonium nutrition. Moreover, this increase was independent of ammonium tolerance capacity. Thus, chlorosis seems to be an exclusive effect of severe ammonium toxicity while mild ammonium stress induces chlorophyll accumulation.  相似文献   

15.
Investigation was carried out to find whether enhanced ultraviolet radiation influences the Malva parviflora L., Plantago major L., Rumex vesicarius L. and Sismbrium erysimoids Desf. of some annual desert plants. The seeds were grown in plastic pots equally filled with a pre-sieved normal sandy soil for 1 month. The planted pots from each species were randomly divided into equal groups (three groups). Plants of the first group exposed to white-light tubes (400–700 nm) 60 w and UV (365 nm) 8 w tubes. The second group was exposed to white-light tubes (400–700 nm) 60 w and UV (302 nm) 8 w tubes. The third group was exposed to white-light tubes (400–700 nm) 60 w and UV (254 nm) 8 w tubes, respectively, for six days. The results indicated that the chlorophyll contents were affected by enhanced UV radiation. The chlorophyll a, b, and total contents were decreased compared with the control values and reduced with the enhanced UV radiation, but the carotenoid was increased compared with the control and also reduced with the enhanced UV radiation. So, the contents of chlorophylls varied considerably. M. parviflora showed the highest constitutive levels of accumulated chlorophyll a, b, and total chlorophyll (0.463, 0.307 and 0.774 mg g−1 f w) among the investigated plant species. P. major showed the lowest constitutive levels of the chloroplast pigments, 0.0036, 0.0038 and 0.0075 mg g−1 f w for chlorophyll a, b, and total chlorophyll at UV-365 nm, respectively. The protein content was decreased significantly in both root and shoot systems compared with the control values but, it was increased with increasing wave lengths of UV-radiation of all tested plants. R. vesicarius showed the highest protein contents among the investigated plants; its content was 3.8 mg g−1 f w at UV-365 nm in shoot system. On the other hand, decreasing ultraviolet wave length induced a highly significant increase in the level of proline in both root and shoot of all tested plants. From the results obtained, it is suggested that proline can protect cells against damage induced by ultraviolet radiation. Statistically, the variations of the studied metabolic activities were significant due to UV radiation treatment in shoot and root system of all investigated plant species.  相似文献   

16.
Physical protection of soil carbon (C) is one of the important components of C storage. However, its exact mechanisms are still not sufficiently lucid. The goal of this study was to explore the influence of soil structure, that is, soil pore spatial arrangements, with and without presence of plant residue on (i) decomposition of added plant residue, (ii) CO2 emission from soil, and (iii) structure of soil bacterial communities. The study consisted of several soil incubation experiments with samples of contrasting pore characteristics with/without plant residue, accompanied by X-ray micro-tomographic analyses of soil pores and by microbial community analysis of amplified 16S–18S rRNA genes via pyrosequencing. We observed that in the samples with substantial presence of air-filled well-connected large (>30 µm) pores, 75–80% of the added plant residue was decomposed, cumulative CO2 emission constituted 1,200 µm C g-1 soil, and movement of C from decomposing plant residue into adjacent soil was insignificant. In the samples with greater abundance of water-filled small pores, 60% of the added plant residue was decomposed, cumulative CO2 emission constituted 2,000 µm C g-1 soil, and the movement of residue C into adjacent soil was substantial. In the absence of plant residue the influence of pore characteristics on CO2 emission, that is on decomposition of the native soil organic C, was negligible. The microbial communities on the plant residue in the samples with large pores had more microbial groups known to be cellulose decomposers, that is, Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes, while a number of oligotrophic Acidobacteria groups were more abundant on the plant residue from the samples with small pores. This study provides the first experimental evidence that characteristics of soil pores and their air/water flow status determine the phylogenetic composition of the local microbial community and directions and magnitudes of soil C decomposition processes.  相似文献   

17.
Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows.Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology.Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area.Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant–pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.  相似文献   

18.
Background and Aims Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2.Methods A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg−1 (deficient) or 60 mg P kg−1 (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380–400 ppm) or eCO2 (550–580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi).Key Results Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers.Conclusions Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves.  相似文献   

19.
Zinc (Zn) is an important micronutrient for the physiology of plants. It is poorly available to the plants in soil solution. A pot experiment was conducted to evaluate effectiveness of various Zn application methods on key enzyme activities and protein content of two contrasting rice genotypes viz., PD16 (Zn efficient) and NDR359 (Zn inefficient). The treatments were, control (0 mg Zn kg−1 soil), soil application (5 mg Zn kg−1 soil), foliar application (0.5 % ZnSO4 + 0.25 % lime at 30, 60 and 90 days after transplanting), soil (5 mg Zn kg−1 soil) + foliar application of 0.5 % ZnSO4 + 0.25 % lime at 30, 60 and 90 days after transplanting. Among all the methods tested soil+foliar application of Zn fertilizers was found most effective in increasing superoxide dismutase (SOD) and carbonic anhydrase (CA) activities as well as chlorophyll and protein content in both the rice varieties. NDR359, showed higher enzyme activities and more chlorophyll content in leaves than PD16, when Zn was applied either through foliar spray alone or in soil along with foliar application. Regarding the protein content in grains, PD16 showed higher protein content than NDR359, thus showed better translocation of Zn from leaves to grains.  相似文献   

20.

Background and Aims

Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia.

Methods

Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures.

Key Results

Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations.

Conclusions

Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号