首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Ajima J  Umezu K  Maki H 《Mutation research》2002,504(1-2):157-172
The SGS1 gene of Saccharomyces cerevisiae is a member of the RecQ helicase family, which includes the human BLM, WRN and RECQL4 genes responsible for Bloom and Werner's syndrome and Rothmund-Thomson syndrome, respectively. Cells defective in any of these genes exhibit a higher incidence of genome instability. We previously demonstrated that various genetic alterations were detectable as events leading to loss of heterozygosity (LOH) in S. cerevisiae diploid cells, utilizing a hemizygous URA3 marker placed at the center of the right arm of chromosome III. Analyses of chromosome structure in LOH clones by pulse field gel electrophoresis (PFGE) and PCR, coupled with a genetic method, allow identification of genetic alterations leading to the LOH. Such alterations include chromosome loss, chromosomal rearrangements at various locations and intragenic mutation. In this work, we have investigated the LOH events occurring in cells lacking the SGS1 gene. The frequencies of all types of LOH events, excluding intragenic mutation, were increased in sgs1 null mutants as compared to the wild-type cells. Loss of chromosome III and chromosomal rearrangements were increased 13- and 17-fold, respectively. Further classification of the chromosomal rearrangements confirmed that two kinds of events were especially increased in the sgs1 mutants: (1) ectopic recombination between chromosomes, that is, unequal crossing over and translocation (46-fold); and (2) allelic crossing over associated with chromosome loss (40-fold). These findings raise the possibility that the Sgs1 protein is involved in the processing of recombination intermediates as well as in the prevention of recombination repair during chromosome DNA replication. On the other hand, intrachromosomal deletions between MAT and HMR were increased only slightly (2.9-fold) in the sgs1 mutants. These results clearly indicate that defects in the SGS1 gene function lead to an elevated incidence of LOH in multiple ways, including chromosome loss and interchromosomal rearrangements, but not intrachromosomal deletion.  相似文献   

2.
Loss of heterozygosity (LOH) at tumor suppressor loci is a major contributor to cancer initiation and progression. Both deletions and mitotic recombination can lead to LOH. Certain chromosomal loci known as common fragile sites are susceptible to DNA lesions under replication stress, and replication stress is prevalent in early stage tumor cells. There is extensive evidence for deletions stimulated by common fragile sites in tumors, but the role of fragile sites in stimulating mitotic recombination that causes LOH is unknown. Here, we have used the yeast model system to study the relationship between fragile site instability and mitotic recombination that results in LOH. A naturally occurring fragile site, FS2, exists on the right arm of yeast chromosome III, and we have analyzed LOH on this chromosome. We report that the frequency of spontaneous mitotic BIR events resulting in LOH on the right arm of yeast chromosome III is higher than expected, and that replication stress by low levels of polymerase alpha increases mitotic recombination 12-fold. Using single-nucleotide polymorphisms between the two chromosome III homologs, we mapped the locations of recombination events and determined that FS2 is a strong hotspot for both mitotic reciprocal crossovers and break-induced replication events under conditions of replication stress.  相似文献   

3.
Yoshida J  Umezu K  Maki H 《Genetics》2003,164(1):31-46
In previous studies of the loss of heterozygosity (LOH), we analyzed a hemizygous URA3 marker on chromosome III in S. cerevisiae and showed that homologous recombination is involved in processes that lead to LOH in multiple ways, including allelic recombination, chromosome size alterations, and chromosome loss. To investigate the role of homologous recombination more precisely, we examined LOH events in rad50 Delta, rad51 Delta, rad52 Delta, rad50 Delta rad52 Delta, and rad51 Delta rad52 Delta mutants. As compared to Rad(+) cells, the frequency of LOH was significantly increased in all mutants, and most events were chromosome loss. Other LOH events were differentially affected in each mutant: the frequencies of all types of recombination were decreased in rad52 mutants and enhanced in rad50 mutants. The rad51 mutation increased the frequency of ectopic but not allelic recombination. Both the rad52 and rad51 mutations increased the frequency of intragenic point mutations approximately 25-fold, suggesting that alternative mutagenic pathways partially substitute for homologous recombination. Overall, these results indicate that all of the genes are required for chromosome maintenance and that they most likely function in homologous recombination between sister chromatids. In contrast, other recombination pathways can occur at a substantial level even in the absence of one of the genes and contribute to generating various chromosome rearrangements.  相似文献   

4.
Smirnova M  Klein HL 《Mutation research》2003,532(1-2):117-135
The postreplication repair pathway (PRR) is composed of error-free and error-prone sub-pathways that allow bypass of DNA damage-induced replication-blocking lesions. The error-free sub-pathway is also used for bypass of spontaneous DNA damage and functions in cooperation with recombination pathways. In diploid yeast cells, error-free PRR is needed to prevent genomic instability, which is manifest as loss of heterozygosity (LOH) events of increased chromosome loss and recombination. Homologous recombination acts synergistically with the error-free damage avoidance branch of PRR to prevent chromosome loss. The DNA damage checkpoint gene MEC1 acts synergistically with the PRR pathway in maintaining genomic stability. Integration of the PRR pathway with other cellular pathways for preventing genomic instability is discussed. In diploid strains, the most dramatic increase is in the abnormality of chromosome loss when a repair or damage detection pathway is defective.  相似文献   

5.
In diploid eukaryotes, repair of double-stranded DNA breaks by homologous recombination often leads to loss of heterozygosity (LOH). Most previous studies of mitotic recombination in Saccharomyces cerevisiae have focused on a single chromosome or a single region of one chromosome at which LOH events can be selected. In this study, we used two techniques (single-nucleotide polymorphism microarrays and high-throughput DNA sequencing) to examine genome-wide LOH in a diploid yeast strain at a resolution averaging 1 kb. We examined both selected LOH events on chromosome V and unselected events throughout the genome in untreated cells and in cells treated with either γ-radiation or ultraviolet (UV) radiation. Our analysis shows the following: (1) spontaneous and damage-induced mitotic gene conversion tracts are more than three times larger than meiotic conversion tracts, and conversion tracts associated with crossovers are usually longer and more complex than those unassociated with crossovers; (2) most of the crossovers and conversions reflect the repair of two sister chromatids broken at the same position; and (3) both UV and γ-radiation efficiently induce LOH at doses of radiation that cause no significant loss of viability. Using high-throughput DNA sequencing, we also detected new mutations induced by γ-rays and UV. To our knowledge, our study represents the first high-resolution genome-wide analysis of DNA damage-induced LOH events performed in any eukaryote.  相似文献   

6.
H L Klein 《Genetics》2001,159(4):1501-1509
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.  相似文献   

7.
Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.  相似文献   

8.
9.
Mitotic homologous recombination is utilised to repair DNA breaks using either sister chromatids or homologous chromosomes as templates. Because sister chromatids are identical, exchanges between sister chromatids have no consequences for the maintenance of genomic integrity unless they involve repetitive DNA sequences. Conversely, homologous chromosomes might differ in genetic content, and exchanges between homologues might lead to loss of heterozygosity and subsequent inactivation of functional genes. Genomic instability, caused by unscheduled recombination events between homologous chromosomes, is enhanced in the absence of RecQ DNA helicases, as observed in Bloom's cancer-prone syndrome. Here, we used two-dimensional gel electrophoresis to analyse budding yeast diploid cells that were modified to distinguish replication intermediates originating from each homologous chromosome. Therefore, these cells were suitable for analysing the formation of inter-homologue junctions. We found that Rad51-dependent DNA structures resembling inter-homologue junctions accumulate together with sister chromatid junctions at damaged DNA replication forks in recQ mutants, but not in the absence of Srs2 or Mph1 DNA recombination helicases. Inter-homologue joint molecules in recQ mutants are less abundant than sister chromatid junctions, but they accumulate with similar kinetics after origin firing under conditions of DNA damage. We propose that unscheduled accumulation of inter-homologue junctions during DNA replication might account for allelic recombination defects in recQ mutants.  相似文献   

10.
Although homologous recombination is an important pathway for the repair of double-stranded DNA breaks in mitotically dividing eukaryotic cells, these events can also have negative consequences, such as loss of heterozygosity (LOH) of deleterious mutations. We mapped about 140 spontaneous reciprocal crossovers on the right arm of the yeast chromosome IV using single-nucleotide-polymorphism (SNP) microarrays. Our mapping and subsequent experiments demonstrate that inverted repeats of Ty retrotransposable elements are mitotic recombination hotspots. We found that the mitotic recombination maps on the two homologs were substantially different and were unrelated to meiotic recombination maps. Additionally, about 70% of the DNA lesions that result in LOH are likely generated during G1 of the cell cycle and repaired during S or G2. We also show that different genetic elements are associated with reciprocal crossover conversion tracts depending on the cell cycle timing of the initiating DSB.  相似文献   

11.
Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe, we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) were deficient in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes.  相似文献   

12.
A search was initiated towards the localization of novel mutated tumour suppressor genes that may be involved in adult leukaemia. For this purpose, we measured the occurrence of loss of heterozygosity (LOH) in nine patients with acute B-lineage leukaemia (ALL) and one with undifferentiated leukaemia (AUL). Eight leukaemias exhibited a diploid karyotype. For each patient, PCR products of 130 polymorphic microsatellite markers, located in subtelomeric areas of every autosomal chromosome arm were analysed to visualize LOH events resulting from reduplication of a single mutated chromosome or from mitotic recombination. These kinds of LOH events contribute most to LOH in model systems but cannot be detected by classical cytogenetic techniques. By comparing allelic PCR products in tumour cells with those in normal cells, LOH was found in tumour cells of one ALL patient at 9p which harbours the known p16INK44 tumour suppressor gene. In the AUL patient, however, LOH was detected at the telomeres of 4q and 21q, suggesting that these sites may contain novel tumour suppressor genes specifically involved in this form of leukaemia. In the DNA of tumour cells from eight out of 10 patients no LOH was detected. This is in contrast with the general assumption that LOH is a frequent phenomenon in ALL. However, some markers at telomeric regions of chromosomes were already homozygous in the control T-cells of several patients. For instance, we found in the DNA of control cells from one patient five consecutive microsatellites on 9p up to 9p43 which were homozygous and in three other patients homozygosity was observed in band 8q24, which includes the MYC gene. These observations indicate that LOH events already are present in non-cancerous putative stem cells and that mitotic recombination may be a very early event in leukaemogenesis.  相似文献   

13.
Defective DNA replication can result in substantial increases in the level of genome instability. In the yeast Saccharomyces cerevisiae, the pol3-t allele confers a defect in the catalytic subunit of replicative DNA polymerase delta that results in increased rates of mutagenesis, recombination, and chromosome loss, perhaps by increasing the rate of replicative polymerase failure. The translesion polymerases Pol eta, Pol zeta, and Rev1 are part of a suite of factors in yeast that can act at sites of replicative polymerase failure. While mutants defective in the translesion polymerases alone displayed few defects, loss of Rev1 was found to suppress the increased rates of spontaneous mutation, recombination, and chromosome loss observed in pol3-t mutants. These results suggest that Rev1 may be involved in facilitating mutagenic and recombinagenic responses to the failure of Pol delta. Genome stability, therefore, may reflect a dynamic relationship between primary and auxiliary DNA polymerases.  相似文献   

14.
BACKGROUND: The life cycle of most eukaryotic organisms includes a meiotic phase, in which diploid parental cells produce haploid gametes. During meiosis a single round of DNA replication is followed by two rounds of chromosome segregation. In the first, or reductional, division (meiosis I), which is unique to meiotic cells, homologous chromosomes segregate from one another, whereas in the second, or equational, division (Meiosis II) sister centromeres disjoin. Meiotic DNA replication precedes the initiation of recombination by programmed Spo11-dependent DNA double-strand breaks. Recent reports that meiosis-specific cohesion is established during meiotic S phase and that the length of S phase is modified by recombination factors (Spo11 and Rec8) raise the possibility that replication plays a fundamental role in the recombination process. RESULTS: To address how replication influences the initiation of recombination, we have used mutations in the B-type cyclin genes CLB5 and CLB6, which specifically prevent premeiotic replication in the yeast Saccharomyces cerevisiae. We find that clb5 and clb5 clb6 but not clb6 mutants are defective in DSB induction and prior associated changes in chromatin accessibility, heteroallelic recombination, and SC formation. The severity of these phenotypes in each mutant reflects the extent of replication impairment. CONCLUSIONS: This assemblage of phenotypes reveals roles for CLB5 and CLB6 not only in DNA replication but also in other key events of meiotic prophase. Links between the function of CLB5 and CLB6 in activating meiotic DNA replication and their effects on subsequent events are discussed.  相似文献   

15.
Loss of heterozygosity (LOH) of tumor suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Understanding how LOH events arise may provide an opportunity for the prevention or early intervention of cancer development. In an effort to investigate the source of LOH events, we constructed MATalphacan1Delta::LEU2 and MATa CAN1 haploid yeast strains and examined canavanine-resistance mutations in a MATa CAN1/MATalphacan1Delta::LEU2 heterozygote formed by mating UV-irradiated and nonirradiated haploids. An increase in LOH was observed when the irradiated CAN1 haploid was mated with nonirradiated can1Delta::LEU2, while reversed irradiation only marginally increased LOH. In the rad51Delta background, allelic crossover type LOH increased following UV irradiation but not gene conversion. In the rad52Delta background, neither type of LOH increased. The chromosome structure following LOH and the requirement for Rad51 and Rad52 proteins indicated the involvement of gene conversion, allelic crossover and break-induced replication. We argued that LOH events could have occurred during the repair of double-strand breaks on a functional (damaged) but not nonfunctional (undamaged) chromosome through recombination.  相似文献   

16.
In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs). Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH). In this study, LOH events induced by ultraviolet (UV) light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP) microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR) events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers.  相似文献   

17.
A CAN1/can1Δ heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.  相似文献   

18.
Two rounds of chromosome segregation after only a single round of DNA replication enable the production of haploid gametes from diploid precursors during meiosis. To identify genes involved in meiotic chromosome segregation, we developed an efficient strategy to knock out genes in the fission yeast on a large scale. We used this technique to delete 180 functionally uncharacterized genes whose expression is upregulated during meiosis. Deletion of two genes, sgo1 and mde2, caused massive chromosome missegregation. sgo1 is required for retention of centromeric sister-chromatid cohesion after anaphase I. We show here that mde2 is required for formation of the double-strand breaks necessary for meiotic recombination.  相似文献   

19.
Sake yeast, a diploid Saccharomyces cerevisiae strain, is useful for industry but difficult to genetically engineer because it hardly sporulates. Until now, only a few recessive mutants of sake yeast have been obtained. To solve this problem, we developed the high-efficiency loss of heterozygosity (HELOH) method, which applies a two-step gene disruption. First, a heterozygous disruptant was constructed by gene replacement with URA3, followed by marker recycling on medium containing 5-fluoroorotic acid (5-FOA). Subsequently, spontaneous loss of heterozygosity (LOH) yielding a homozygous disruptant was selected for in a second round of gene integration. During this step, the wild-type allele of the heterozygous disruptant was marked by URA3 integration, and the resulting transformants were cultivated in non-selective medium to induce recombination and then grown on medium with 5-FOA to enrich for mutants that had undergone LOH. Although the frequency with which LOH occurs is extremely low, many homozygous disruptants were obtained with the HELOH method. Thus, we were able to efficiently construct homozygous disruptants of diploid sake yeast without sporulation, and sake yeast strains with multiple auxotrophies and a protease deficiency could be constructed. The HELOH method, therefore, facilitated the utilization of diploid sake yeast for genetic engineering purposes.  相似文献   

20.
The polyomavirus large T antigen promotes homologous recombination at high rates when expressed in rat cells carrying the viral replication origin and two repeats of viral DNA sequences stably integrated into the cellular genome. Recombination consists of both reciprocal and nonreciprocal events and is promoted by mutants defective in the initiation of viral DNA synthesis (L. St-Onge, L. Bouchard, and M. Bastin, J. Virol. 67:1788-1795, 1993). We have extended our studies to a rat cell line undergoing amplification of the viral insert. We show that large T antigen promotes amplification independently of its replicative function but that its origin-specific DNA binding activity is not sufficient to promote homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号