首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modern concept of the hormonal regulation of fruit set, growth, maturation, and ripening is considered. Pollination and fertilization induce ovule activation by surmounting the blocking action of ethylene and ABA to be manifested in auxin accumulation. Active fruit growth by pericarp cell division and elongation is due to the syntheses of auxin in the developing seed and of gibberellins in the pericarp. In climacteric fleshy fruits, the maturation is controlled by ethylene via so-called System 1 combining the possibilities of autoinhibition and autocatalysis by ethylene of its own biosynthesis. Transition of tomato fruits from maturation to ripening is characterized by highly active synthesis of ethylene and its receptors due to the functioning of regulatory System 2 resulting in the up-regulation of much greater number of ethylene-inducible genes. In peach fruits, the hormonal regulation of ripening includes also an active auxin involvement in the ethylene biosynthesis, which is combined with the ethylene-induced expression of genes encoding both auxin biosynthesis and the response to auxin. Ethylene induces the expression of genes responsible for the fruit softening, its taste, color, and flavor. Nonclimacteric fleshy fruits produce very small amounts of ethylene; its evolution increases only by the very end of ripening and can be described by a reduced System 1. The ripening of nonclimacteric fruits only weakly depends on ethylene but is stimulated by abscisic acid.  相似文献   

2.
On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors.  相似文献   

3.
Fruit development is a complex yet tightly regulated process. The developing fruit undergoes phases of cell division and expansion followed by numerous metabolic changes leading to ripening. Plant hormones are known to affect many aspects of fruit growth and development. In addition to the five classic hormones (auxins, gibberellins, cytokinins, abscisic acid and ethylene) a few other growth regulators that play roles in fruit development are now gaining recognition. Exogenous application of various hormones to different stages of developing fruits and endogenous quantifications have highlighted their importance during fruit development. Information acquired through biochemical, genetic and molecular studies is now beginning to reveal the possible mode of hormonal regulation of fruit development at molecular levels. In the present article, we have reviewed studies revealing hormonal control of fruit development using tomato as a model system with emphasis on molecular genetics.  相似文献   

4.
In contrast to climacteric fruits, where ethylene is known to be pivotal, the regulation of ripening in non-climacteric fruits is not well understood. In the non-climacteric strawberry (Fragaria anannassa), auxin and abscisic acid (ABA) are thought to be important, but the roles of other hormones suggested to be involved in fruit development and ripening are not clear. Here changes in the levels of indole-3-acetic acid (IAA), ABA, GA(1), and castasterone from anthesis to fully ripened fruit are reported. The levels of IAA and GA(1) rise early in fruit development before dropping to low levels prior to colour accumulation. Castasterone levels are highest at anthesis and drop to very low levels well before ripening commences, suggesting that brassinosteroids do not play an important role in ripening in strawberry. ABA levels are low at anthesis and gradually rise through development and ripening. The synthetic auxin, 1-naphthaleneacetic acid (NAA), can delay ripening, but the application of GA(3), the gibberellin biosythesis inhibitor paclobutrazol, and ABA had no significant effect. IAA and ABA levels are higher in the developing achenes than in the receptacle tissue and may be important for receptacle enlargement and ripening, and seed maturation, respectively. Contrary to a recent report, the biologically active GA(4) was not detected. The pattern of changes in the levels of the hormones are different from those reported in another well studied non-climateric fruit, grape, suggesting that a single consistent pattern of hormone changes does not occur in this group of fruit during ripening.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Loss-of-function ethylene insensitive 2 (EIN2) mutations showed ethylene insensitivity in Arabidopsis, which indicated an essential role of EIN2 in ethylene signaling. However, the function of EIN2 in fruit ripening has not been investigated. To gain a better understanding of EIN2, the temporal regulation of LeEIN2 expres- sion during tomato fruit development was analyzed. The expression of LeEIN2 was constant at different stages of fruit development, and was not regulated by ethylene. Moreover, LeEIN2-silenced tomato fruits were developed using a virus-induced gene silencing fruit system to study the role of LeEIN2 in tomato fruit ripening. Silenced fruits had a delay in fruit development and ripening, related to greatly descended expression of ethylene-related and ripening-related genes in comparison with those of control fruits. These results suggested LeEIN2 positively mediated ethylene signals during tomato development. In addition, there were fewer seeds and Iocules in the silenced fruit than those in the control fruit, like the phenotype of parthenocarpic tomato fruit. The content of auxin and the expression of auxin-regulated gene were declined in silenced fruit, which indicated that EIN2 might be important for crosstalk between ethylene and auxin hormones.  相似文献   

12.
Notwithstanding the economic importance of non-climacteric fruits like grape and strawberry, little is known about the mechanisms that regulate their ripening. Up to now no growth regulator has emerged with a primary role similar to that played by ethylene in the ripening of the climacteric fruits. Strawberries can produce ethylene, although in limited amounts. Two cDNAs coding for enzymes of the ethylene biosynthetic pathway (i.e. FaACO1 and FaACO2), and three cDNAs encoding different ethylene receptors have been isolated. Two receptors (i.e. FaEtr1 and FaErs1) belong to the type-I while the third (i.e. FaEtr2) belongs to the type-II group. The expression of both the ACO and the receptor-encoding genes has been studied in fruits at different stages of development and in fruits treated with hormones (i.e. ethylene and the auxin analogue NAA). All the data thus obtained have been correlated to the known data about ethylene production by strawberry fruits. Interestingly, a good correlation has resulted between the expression of the genes described in this work and the data of ethylene production. In particular, similarly to what occurs during climacteric fruit ripening, there is an increased synthesis of receptors concomitant with the increased synthesis of ethylene in strawberries as well. Moreover, the receptors mostly expressed in ripening strawberries are the type-II ones, that is those with a degenerate histidine-kinase domain. Since the latter domain is thought to establish a weaker link to the CTR1 proteins, even the little ethylene produced by ripening strawberries might be sufficient to trigger ripening-related physiological responses.  相似文献   

13.
Jia HF  Chai YM  Li CL  Lu D  Luo JJ  Qin L  Shen YY 《Plant physiology》2011,157(1):188-199
The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA.  相似文献   

14.
Recent advances in fruit development and ripening: an overview   总被引:5,自引:0,他引:5  
  相似文献   

15.
Modifications to the cell wall of developing and ripening tomato fruit are mediated by cell wall-degrading enzymes, including a beta-d-xylosidase or alpha-l-arabinofuranosidase, which participate in the breakdown of xylans and/or arabinoxylans. The activity of both enzymes was highest during early fruit growth, before decreasing during later development and ripening. Two beta-d-xylosidase cDNAs, designated LeXYL1 and LeXYL2, and an alpha-l-arabinofuranosidase cDNA, designated LeARF1, were obtained. Accumulation of mRNAs for beta-d-xylosidase and alpha-l-arabinofuranosidase was examined during fruit development and ripening. LeARF1 and LeXYL2 genes were relatively highly expressed during fruit development and decreased after the onset of ripening. By contrast, LeXYL1 was not expressed during fruit development, but was expressed later, particularly during over-ripening. The expression of all three genes was also followed in ripening-impaired mutants, Nr, Nr2, nor, and rin of cv. Ailsa Craig fruit. LeXYL2 mRNA was detected in the ripe fruits of all the mutants and its abundance was similar to that in mature green wild-type fruit. By contrast, LEXYL1 mRNA was expressed only in the ripe fruits of the Nr mutant, suggesting that the two beta-d-xylosidase genes are subject to distinct regulatory control during fruit development and ripening. LeARF1 mRNA was detected in ripe fruits of Nr2, nor and rin, and not in ripe fruit of the Nr mutant. The accumulation of LeARF1 in ripe fruit was restored by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, while 1-MCP had no effect on the expression of LeXYL1 or LeXYL2. This suggests that LeARF1 expression is subject to negative regulation by ethylene and that the two beta-d-xylosidase genes are independent of ethylene action.  相似文献   

16.
The phytohormone ethylene is essential for ripening of climacteric fruits such as tomato. While many of the genes responsible for ethylene synthesis and perception have been identified, the regulatory network controlling autocatalytic climacteric ethylene synthesis is not well understood. In order to better understand the regulation of ripening-associated ethylene, we have exploited the genetic variation within Solanum Sect. Lycopersicon. In particular, we have used a near-isogenic population of S. habrochaites introgression lines to identify chromosome segments affecting ethylene emissions during ripening. S. habrochaites fruits produce much larger quantities of ethylene during ripening than do cultivated S. lycopersicum tomatoes. A total of 17 segments were identified; 3 had emissions more than twice the level of the tomato parent, 11 had less than a twofold increase and 3 had significantly reduced emissions at one or more ripening stages. While several of these segments co-segregate with known ethylene-related genes, many do not correspond to known genes. Thus, they may identify novel modes of regulation. These results illustrate the utility of wild relatives and their introgression lines to understand regulation of fruit ripening-related processes.  相似文献   

17.
Changes in levels of growth regulating substances during fruit development and maturation and the effects of abscisic acid application on ripening of apricot fruits were investigated. The results showed that the levels of growth promoting substances were high, but started to decrease rapidly just before the end of stage Ⅱ and continued throughout stage Ⅲ. The promoting substances almost disappeared in fully ripe fruits. The ABA-like inhibiting substances first appeared during the end of stage Ⅱ, increased significantly in stage Ⅲ, and reached a maximum level in fully ripe fruits. Exogenous ABA application enhanced fruit respiration rate and accelerated the ripening process when applied to preclimacteric fruits but inhibited these processes when applied to post-climacteric fruits. The above results suggested that the ABA may play an important role in apricot fruit ripening. The interrelationship of ABA, ethylene, and fruit ripening was discussed.  相似文献   

18.
19.
Pectin esterases (PE, EC 3.1.1.11) catalyse the demethylation of pectin. As a result of its activity, structural interactions among cell wall components during cell wall turnover and loosening are affected. In plants, PEs are typically encoded by a gene family. This family has been studied in strawberry (Fragaria x ananassa Duch.) in order to investigate the role of distinct PE genes during fruit ripening and senescence. By a combination of a PCR-based library screening and RT-PCR four different strawberry PE cDNAs, termed FaPE1 to FaPE4, have been isolated. Differential expression of each FaPE gene in various organs and during fruit development was revealed by northern blot. FaPE1 is specifically expressed in fruit, showing an increasing expression during the ripening process up to a maximum in the turning stage. Concerning hormone regulation, auxin treatment increased FaPE1 mRNA levels in green fruit, whereas exogenous ethylene decreased FaPE1 mRNA levels in ripe and senescing fruits. It is proposed that this repression of FaPE1 expression could be involved in textural changes occurring during fruit senescence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号