共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
基于中国生态系统研究网络 (CERN) 长期监测数据,选取新疆维吾尔自治区代表暖温带干旱区的绿洲农田生态系统 (阿克苏站)、代表暖温带荒漠区 (策勒站) 以及温带荒漠区 (阜康站) 的绿洲农田和荒漠生态系统综合观测场、辅助观测场和农户调查点2005-2020年0-100 cm土层的土壤有机碳 (SOC) 储量数据,分析新疆农田和荒漠生态系统SOC储量的影响因素。研究结果表明,2005-2020年0-100 cm土层SOC总储量平均值为阿克苏站 (5.17 kg/m2)>阜康站 (4.20 kg/m2)>策勒站 (2.96 kg/m2)。0-20 cm、20-40 cm、40-60 cm土层的SOC分别约占0-100 cm土层储量的27.3%-35.3%、23.1%-24.6%和15.8%-17.5%。在阿克苏站,施肥量最高、灌溉量最低的农户调查点SOC储量最高;而在策勒站和阜康站,农户调查点和辅助观测场的施肥和灌溉措施分别最有利于提高SOC储量。总体来看,土壤含水量、地上生物量与SOC储量呈正相关关系;年平均气温与0-40 cm土层的SOC储量呈负相关关系。在单一生态站的生态系统尺度,年平均气温与SOC储量相关性不显著;地上生物量与策勒站和阜康站的SOC储量呈正相关关系,但是与阿克苏站0-40 cm土层的SOC储量呈负相关关系;施纯钾量与策勒站0-60 cm土层的SOC储量呈正相关关系,但与阜康站40-100 cm土层的SOC储量呈负相关关系。总之,与自然状态下的荒漠和农田不施肥相比,灌溉和施肥的农田管理措施有利于增加干旱区SOC储量。不同生态站要根据自身区域特点制定合理的农田管理模式,以维持较高的SOC储量。 相似文献
3.
4.
基于1979—1985年全国第二次土壤普查和2015年实地采样数据,利用土壤类型法计算了近35年来松嫩平原及其各县农田表层土壤有机碳密度和土壤碳库储量;并分析了松嫩平原农田土壤有机碳密度的空间分布及变化特征;利用饱和值法对松嫩平原及其各县市农田土壤有机碳量的变化趋势进行拟合,估算其农田土壤的固碳潜力。结果表明:(1)2015年松嫩平原农田表层土壤有机碳密度平均值为1.61 kg/m~2,近35年来约有81.59%的农田土壤有机碳密度呈下降趋势,集中分布在松嫩平原北部、东部和东南部地区,以富裕县东部、依安县中部、肇东县西部、扶余县西部等地区土壤有机碳密度下降幅度最大;(2)2015年松嫩平原农田表层土壤有机碳库总储量为233.63 Tg,比全国第二次土壤普查减少了32.62 Tg;(3)2015年松嫩平原农田表层土壤总固碳潜力为-32.7 TgC,呈现出\"碳源\"趋势,农田土壤单位面积固碳潜力平均值为-1.793×10~(-3)Tg/km~2。 相似文献
5.
以焉耆盆地绿洲区丝路重镇——焉耆回族自治县长期定位监测的数据为基础,实地采集800个土样进行土壤有机碳(SOC)实验室测试,进行点位模拟校验模型,并拓展到区域模拟,采用BCCC-CSM1.1气候模式,研究农田土壤有机碳密度分布特征及有机碳储量空间分布格局,为气候变化条件下,绿洲区耕地SOC储量和SOC密度变化提供数据支持。结果表明:(1) DNDC模型能够较好地模拟研究区农田的SOC及其动态变化,相关系数大于0.96,模拟值与观测值的均方根误差(RMSE)在0.48%—13.08%之间,模拟值与实测值显著相关。(2)点位模拟不同处理间SOC变化显示,不同土壤质地土壤有机碳含量差异明显,5年来SOC增长趋势表现为粉砂质壤土壤土砂质壤土。(3) 2017年焉耆县农田表层土壤有机碳总储量为0.44 Tg C,在未来30年里,在相应农业措施下,研究区农田0—20 cm土层SOC密度和储量呈显著增加趋势,单位面积碳增量增幅为-7%—29%;新增固碳量3.708×10~8—1.978×10~9 t,增幅为-5%—48%,呈现出\"碳汇\"趋势,这对恢复农田SOC的平衡和绿洲农业的可持续发展至关重要。 相似文献
6.
农田生态系统碳汇包括农作物生物量碳汇和农田土壤碳汇两个方面,中国农田生态系统面积大,碳储量高,是全球生态系统碳循环的重要组成部分。厘清中国农作物生物量和土壤有机碳含量、变化率和影响因素对于解析全球碳循环和维系粮食安全具有重要意义。梳理农田生态系统碳汇相关概念的基础上,比较农田生态系统碳汇研究方法的适用性及存在问题,通过以往研究和SoilGrids250数据研究中国农田生态系统碳库时空分布,并分析农田生态系统碳汇的影响因素及固碳方法。结果表明,中国近30年来农作物生物量呈现增加趋势,农田土壤有机碳含量普遍较低且空间分布不均,0-5cm土壤有机碳含量平均值在16.7 g/kg到86.5 g/kg之间,增加农田土壤有机碳含量是未来中国农田生态系统碳汇的重要方向。肥料和有机残留管理、保护性耕作、种植模式、灌溉等管理措施是增加土壤有机碳汇的主要措施,但农田生态系统碳汇潜力估算仍存在不确定性。最后,从农田生态系统碳汇潜力估算、影响因素厘定和增汇技术研发3个方面提出未来研究方向。研究结果有助于推动农田生态系统碳汇科学研究和技术推广,为实现农田生态系统助力\"碳中和\"寻求重要路径。 相似文献
7.
农田土壤有机碳库大小及周转 总被引:9,自引:0,他引:9
对水稻土、早地潮土和红壤下土壤有机碳库的大小、分解速率和平均驻留时间进行了分析,根据有机碳周转时间的不同,可将土壤有机碳库划分为活性碳库、缓效性碳库和惰效性碳库3个库,其遵循三库一级动力学方程,根据土壤有机碳的分解变化,用此方程在SAS8.2软件上拟合出活性碳库、缓效性碳库的大小及其分解速率.结果表明,农田土壤各剖面的活性碳一般占土壤有机碳的0.6%~3.7%,平均驻留时间为4~45 d;缓效性碳库一般占土壤有机碳的37.7%~81.2%,平均驻留时间为5~24年;利用酸水解测得的惰效性碳一般占土壤有机碳的17.1%~48.1%.不同水型及不同母质下的水稻土中各碳库变化规律分别为:潴育型水稻土>潜育型水稻土>淹育型水稻土、第四纪红粘土>第三纪红砂岩类.不同水稻土和旱地土壤中,活性碳库变化规律为水稻土>旱地,而缓效性碳为旱地土壤>水稻土,表明旱地土壤的固碳能力较水田强. 相似文献
8.
环渤海地区土壤有机碳库及其空间分布格局的研究 总被引:16,自引:4,他引:16
土壤碳库的研究和管理以及土地利用变化对土壤碳库的影响已成为全球变化研究中的核心内容.本文利用第2次土壤普查时环渤海地区1374个土壤剖面资料,对该地区土壤有机碳库进行了估算,结果表明,整个环渤海地区1m深的土壤有机碳库为2.1PgC.进一步分析该区域各土壤类型的有机碳库发现,棕壤的有机碳库最大,占该区域总有机碳库的55.6%,其次为潮土,占26.9%,风沙土和暗棕壤的土壤有机碳库则很小,仅占0.1%以下.对不同土壤类型的碳密度比较发现,沼泽土的碳密度最高,为22.9kgC·m-2,其次是暗棕壤,为16.04kgC·m-2;而风沙土的碳密度最低,为2.88kgC·m-2,再次是盐土,为6.0kgC·m-2.可见土地风沙化和盐碱化将极大地降低土壤的有机碳.此外,该地区表层土壤中的碳储量为673.30TgC,即约占总碳储量三分之一的土壤碳易受人类活动的影响.该地区土壤有机碳的水平分布主要为沿海地区、平原地区、西北部地区和山地丘陵区4个区域,其碳密度由大到小依次为山地丘陵区(森林)>西北部地区(农牧区)>平原地区(农业)>沿海地区(裸地).其分布规律不仅在一定程度上体现了气候和地形等因素的作用,而且充分反映了不同人类活动强度对土壤有机碳的影响.因此,加强该区域土地的保护和管理对于维护土壤有机碳和土地的持续利用极其重要. 相似文献
9.
中国陆地生态系统土壤有机碳变化研究进展 总被引:5,自引:0,他引:5
通过文献资料, 对中国陆地生态系统土壤有机碳变化研究进行评述. 20世纪80年代初至21世纪初, 中国森林、草地、灌丛和农田土壤有机碳库合计年均增加(71±19) Tg/a, 三江平原沼泽湿地垦殖导致土壤有机碳损失(6±2) Tg/a. 该结果存在极大的不确定性, 尤其是对森林、灌丛和草地碳库变化的估计. 未来研究需重点关注土地利用变化及其碳源、碳汇效应, 放牧管理对草地土壤有机碳库的影响, 灌丛和非森林树木(经济林、防护林及四旁绿化造林)土壤有机碳变化估算, 深层土壤有机碳变化的测定和估算, 中国土壤的固碳潜力及陆地生态系统碳收支模型开发. 相似文献
10.
生态系统转换影响土壤有机碳的动态、循环及环境质量.本研究分析了子午岭林区农田、草地、灌丛和森林不同生态系统土壤总有机碳、活性有机碳和稳定性有机碳含量.结果显示:各生态系统中,表层(0~10 cm)土壤总有机碳含量显著高于深层土壤(40~70 cm).与农田生态系统表层土壤相比,草地、灌丛、森林生态系统土壤总有机碳含量分别增加82.07%、121.67%和183.16%,深层土壤有机碳含量也有类似的趋势;从增加的绝对值来看,表层土壤活性有机碳含量分别增加2.24、4.13和5.43 g/kg,土壤稳定性有机碳含量分别增加4.76、6.23和10.18g/kg.表明农田生态系统转换为林、草生态系统,有利于土壤有机碳的积累.而且,土壤作为碳“汇”的功能增强,更有利于CO2固定和生态环境改善. 相似文献
11.
土壤有机碳分组方法及其在农田生态系统研究中的应用 总被引:18,自引:2,他引:18
农田土壤有机碳成分复杂,活性有机碳对管理措施具有敏感性,而惰性有机碳具有固碳作用.碳分组技术主要包括物理技术、化学技术和生物学技术.物理分组的依据是密度、粒径大小和空间分布,可分离出有机碳的活性组分和惰性组分.化学分组基于土壤有机碳在各种提取剂中的溶解性、水解性和化学反应性从而分离出各种组分:溶解性有机碳是生物可代谢有机碳,包括有机酸、酚类和糖类等;酸水解方法可将有机碳分成活性和惰性成分;利用KMnO4模拟酶氧化可分离出活性碳和非活性碳.利用生物技术可测定出微生物生物量碳和潜在可矿化碳.在不同农田管理措施下,有机碳组分的化学组成和库容会发生不同变化,对土壤有机碳沉积速率产生不同影响.为了探明土壤有机碳组分与碳沉积之间的定性或定量关系,今后应该加强对各种分组方法的标准化研究,探索不同分组方法的整合应用,针对不同农田管理措施,总结出适合的有机碳分组方法或联合分组方法. 相似文献
12.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline. 相似文献
13.
Steven DeGryze Johan Six Keith Paustian Sherri J. Morris Eldor A. Paul Roel Merckx 《Global Change Biology》2004,10(7):1120-1132
Carbon (C) can be sequestered in the mineral soil after the conversion of intensively cropped agricultural fields to more extensive land uses such as afforested and natural succession ecosystems. Three land‐use treatments from the long‐term ecological research site at Kellogg biological station in Michigan were compared with a nearby deciduous forest. Treatments included a conventionally tilled cropland, a former cropland afforested with poplar for 10 years and an old field (10 years) succession. We used soil aggregate and soil organic matter fractionation techniques to isolate C pools that (1) have a high potential for C storage and (2) accumulate C at a fast rate during afforestation or succession. These fractions could serve as sensitive indicators for the total change in C content due to land‐use changes. At the mineral soil surface (0–7 cm), afforesting significantly increased soil aggregation to levels similar to native forest. However, surface soil (0–7 cm) C did not follow this trend: soil C of the native forest site (22.9 t C ha?1) was still significantly greater than the afforested (12.6 t C ha?1) and succession (15.4 t C ha?1) treatments. However, when the 0–50 cm soil layer was considered, no differences in total soil C were observed between the cropland and the poplar afforested system, while the successional system increased total soil C (0–50 cm) at a rate of 0.786 t C ha?1 yr?1. Afforested soils sequestered C mainly in the fine intra‐aggregate particulate organic matter (POM) (53–250 μm), whereas the successional soils sequestered C preferentially in the mineral‐associated organic matter and fine intra‐aggregate POM C pools. 相似文献
14.
15.
Soil organic carbon stocks in China and changes from 1980s to 2000s 总被引:12,自引:0,他引:12
ZUBIN XIE JIANGUO ZHU GANG LIU GEORG CADISCH† TOSHIHIRO HASEGAWA‡ CHUNMEI CHEN § HUIFENG SUN § HAOYAN TANG QING ZENG 《Global Change Biology》2007,13(9):1989-2007
The estimation of the size and changes of soil organic carbon (SOC) stocks is of great importance for decision makers to adopt proper measures to protect soils and to develop strategies for mitigation of greenhouse gases. In this paper, soil data from the Second State Soil Survey of China (SSSSC) conducted in the early 1980s and data published in the last 5 years were used to estimate the size of SOC stocks over the whole profile and their changes in China in last 20 years. Soils were identified as paddy, upland, forest, grassland or waste‐land soils and an improved soil bulk density estimation method was used to estimate missing bulk density data. In the early 1980s, total SOC stocks were estimated at 89.61 Pg (1 Pg=103 Tg=1015 g) in China's 870.94 Mha terrestrial areas covered by 2473 soil series. In the paddy, upland, forest and grassland soils the respective total SOC stocks were 2.91 Pg on 29.87 Mha, 10.07 Pg on 125.89 Mha, 34.23 Pg on 249.32 Mha and 37.71 Pg on 278.51 Mha, respectively. The SOC density of the surface layer ranged from 3.5 Mg ha−1 in Gray Desery grassland soils to 252.6 Mg ha−1 in Mountain Meadow forest soils. The average area‐weighted total SOC density in paddy soils (97.6 Mg ha−1) was higher than that in upland soils (80 Mg ha−1). Soils under forest (137.3 Mg ha−1) had a similar average area‐weighted total SOC density as those under grassland (135.4 Mg ha−1). The annual estimated SOC accumulation rates in farmland and forest soils in the last 20 years were 23.61 and 11.72 Tg, respectively, leading to increases of 0.472 and 0.234 Pg SOC in farmland and forest areas, respectively. In contrast, SOC under grassland declined by 3.56 Pg due to the grassland degradation over this period. The resulting estimated net SOC loss in China's soils over the last 20 years was 2.86 Pg. The documented SOC accumulation in farmland and forest soils could thus not compensate for the loss of SOC in grassland soils in the last 20 years. There were, however, large regional differences: Soils in China's South and Eastern parts acted mainly as C sinks, increasing their average topsoil SOC by 132 and 145 Tg, respectively. In contrast, in the Northwest, Northeast, Inner Mongolia and Tibet significant losses of 1.38, 0.21, 0.49 and 1.01 Pg of SOC, respectively, were estimated over the last 20 years. These results highlight the importance to take measures to protect grassland and to improve management practices to increase C sequestration in farmland and forest soils. 相似文献
16.
颗粒有机质的来源、测定及其影响因素 总被引:4,自引:1,他引:4
土壤活性有机质及其组分作为土壤质量的重要指标在土壤化学、物理和生物性质方面起着重要作用。颗粒有机质能够有效地反映有机质的特性,与微生物生长、营养供给及C、N的生物学调节密切相关。作为活性有机质的一个量度指标,颗粒有机质越来越受到人们的重视。本文综述了土壤颗粒有机质的来源及其在土壤有机质转化过程中的作用,对其测定方法作了系统的描述,阐明了土壤理化性质、农业措施(施肥与耕作)及土地利用类型对土壤颗粒有机质在土壤形成及维持其稳定性方面的影响。 相似文献
17.
137Cs和210Pbex示踪黑土区坡耕地土壤侵蚀对有机碳的影响 总被引:4,自引:0,他引:4
通过在野外28.5 hm2的坡耕地上采集土壤样品,定量评价了利用137Cs和210Pbex研究土壤有机碳(SOC)动态的潜力,以探讨东北黑土区土壤侵蚀对土壤有机碳的影响.结果表明:农耕地土壤137Cs、210Pbex和SOC在平面和垂直深度上均具有相似的分布特征.在平面上,尽管受土壤侵蚀沉积的影响,137Cs、210Pbex面积活度及SOC储量变异很大,但它们具有相同的变化趋势.在垂直断面上,侵蚀区137Cs、210Pbex和SOC在0~25 cm耕层内分布均匀,25 cm以下放射性活度减小,SOC含量也相应下降;沉积区0~100 cm深度上137Cs和210Pbex呈现先增加后减小的分布规律,SOC也具有类似的变化特征.农耕地SOC与137Cs、210Pbex呈显著线性相关,表明它们在黑土区农耕地上具有相似的物理运移特征,137Cs和210Pbex可直接用来定量评价黑土侵蚀下SOC的时空分布特点. 相似文献
18.
Results of comparative analysis of turnover times and the capacity of major global pools of organic carbon are presented; the place of photosynthetic carbon sequestration is defined; concept of its catalytic role in the regulation of the organic branch of the global carbon cycle is ground. Concept of reservoir-flux model of photosynthetic carbon sequestration and of the net photosynthetic production at the territory of Northern Eurasia is suggested.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 81–89.Original Russian Text Copyright © 2005 by Voronin, Black. 相似文献
19.
Paul S. J. Verburg John A. Arnone III Daniel Obrist David E. Schorran R. David Evans† Debbie Leroux-swarthout† Dale W. Johnson‡ Yiqi Luo§ James S. Coleman 《Global Change Biology》2004,10(4):498-508
Increases in net primary production (NPP) may not necessarily result in increased C sequestration since an increase in uptake can be negated by concurrent increases in ecosystem C losses via respiratory processes. Continuous measurements of net ecosystem C exchange between the atmosphere and two experimental cheatgrass (Bromus tectorum L.) ecosystems in large dynamic flux chambers (EcoCELLs) showed net ecosystem C losses to the atmosphere in excess of 300 g C m?2 over two growing cycles. Even a doubling of net ecosystem production (NEP) after N fertilization in the second growing season did not compensate for soil C losses incurred during the fallow period. Fertilization not only increased C uptake in biomass but also enhanced C losses through soil respiration from 287 to 469 g C m?2, mainly through an increase in rhizosphere respiration. Fertilization decreased dissolved inorganic C losses through leaching of from 45 to 10 g C m?2. Unfertilized cheatgrass added 215 g C m?2 as root‐derived organic matter but the contribution of these inputs to long‐term C sequestration was limited as these deposits rapidly decomposed. Fertilization increased NEP but did not increase belowground C inputs most likely due to a concurrent increase in the production and decomposition of rhizodeposits. Decomposition of soil organic matter (SOM) was reduced by fertilizer additions. The results from our study show that, although annual grassland ecosystems can add considerable amounts of C to soils during the growing season, it is unlikely that they sequester large amounts of C because of high respiratory losses during dormancy periods. Although fertilization could increase NEP, fertilization might reduce soil C inputs as heterotrophic organisms favor root‐derived organic matter over native SOM. 相似文献