首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Both human and rat erythrocytes respond to low doses (10(-11)--10(-9) M) of L-isoproterenol and L-epinephrine with an increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters. The receptors in both cell types have many of the characteristics of beta-receptors for catecholamines. However, hormone-receptor interaction in the human cell does not lead to an increase in intracellular cyclic AMP concentration, but in the rat cell, hormone-receptor interaction does lead to a significant increase in cyclic AMP content. Thus, catecholamine-beta-receptor interaction, at least in the human red cell, leads to a change in red cell properties which are not mediated by adenylate cyclase activation. Likewise, prostaglandin E2, at 10(-12)--10(-10) M, causes are increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters, but it also does not increase the cycliC AMP content of the human erythrocyte but does increase that of the rat erythrocyte. Nevertheless, exogenous cyclic AMP, when added at a concentration of 10(-8) M to washed human erythrocytes, increases the degree of hypotonic hemolysis. Conversely, prostaglandin E1, at 10(-12)--10(-10) M, causes a decreased degree of hypotonic hemolysis and an increased rate of filtration through a standard filter. Both prostaglandin E2 and the catecholamines decrease the size of a rapidly exchangeable calcium pool, and prostaglandin E1 increases it.  相似文献   

2.
Washed erythrocytes from human, buffalo, sheep and goat preincubated with different concentrations of calcium chloride (16.7–1830 μM) showed significantly different rates of hemolysis (up to 62%) after addition of bilirubin (72 μM). Goat erythrocytes displayed marked resistance to hemolysis with only 11% hemolysis observed at the highest calcium concentration. Similar trend in hemolysis was also observed when the concentration of CaCl2 was fixed (330 μM) and bilirubin concentration varied (0–72 μM). (Ca2+–Mg2+)-ATPase levels were found significantly lower in goat and sheep erythrocyte membranes compared to human and buffalo erythrocyte membranes. This was correlated well with the observed hemolysis in various mammalian erythrocytes.  相似文献   

3.
Both human and rat erythrocytes respond to low doses (10−11-10−9 M) of L-isoproterenol and Lepinephrin with an increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters. The receptors in both cell types have many of the characteristics of β-receptors for catecholamines. However, hormone-receptor interaction in the human cell does not lead to an increase in intracellular cyclic AMP concentration, but in the rat cell, hormone-receptor interaction does lead to a significant increase in cylic AMP content. Thus, catecholamine-β-receptor interaction, at least in the human red cell, leads to a change in red cell properties which are not mediated by adenylate cyclase activation. Likewise, prostaglandin E2, at 10−12-10−10 M, causes an increased degree of hypotonic hemolysis and a decreased rate of filtration through standardized paper filters, but it also does not increase the cyclic AMP content of the human erythrocyte but does increase that of the rat erythrocyte. Nevertheless, exogenous cyclic AMP, when added at a concentration of 10−8 M to washed human erythrocytes, increases the degree of hypotonic hemolysis. Conversely, prostaglandin E1, at 10−12-10−10 M, causes a decreased degree of hypotonic hemolysis and an increased rate of filtration through a standard filter. Both prostaglandin E2 and the catecholamines decrease the size of a rapidly exchangeable calcium pool, and prostaglandin E1 increases it.  相似文献   

4.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

5.
Cardiac glycosides inhibit the sodium pump. However, some studies suggest that nanomolar ouabain concentrations can stimulate the activity of the sodium pump. In this study, using the Na(+)/K(+)-ATPase of human erythrocytes, we compared the effect of digoxin, ouabain and an ouabain like-factor (OLF), on (86)Rb uptake. Ouabain concentrations below 10(-9) M significantly stimulate Rb(+) uptake, and the maximal increase above base-line values is 18 +/- 5% at 10(-10) M ouabain. No stimulation is observed in the same conditions by digoxin. OLF behaved like ouabain, producing an activation of Rb(+) flux at concentrations lower than 10(-9) M ouabain equivalents (14 +/- 3% at 10(-10) M). Western blot analysis revealed the presence of both alpha(1) and alpha(3) pump isoforms in human erythrocytes. Our data confirm the analogies between OLF and ouabain and suggest that Na(+)/K(+)-ATPase activation may be related to the alpha(3) isoform. In addition, we investigated whether ouabain at different concentrations was effective in altering the intracellular calcium concentration of erythrocytes. We found that ouabain at concentration lower than 10(-9) M did not affect this homeostasis.  相似文献   

6.
Cytotoxic lymphocytes kill virally infected cells with specialized cytotoxic granules containing perforin, a protein that forms toxic pores in the target cell membrane. These specialized cytotoxic granules also contain calreticulin, an endoplasmic reticulum chaperone protein. The calcium-independent association of perforin and calreticulin prompted our evaluation of calreticulin's potential to function as a regulatory molecule that protects cytotoxic lymphocytes from their own perforin. We report here that 10(-7) M calreticulin blocked perforin-mediated lysis in the hemolytic model system using erythrocytes as targets. Previously, we found that millimolar levels of calcium in the hemolytic assays dissociate high-affinity perforin-calreticulin complexes, which makes it unlikely that perforin associates with calreticulin in solution when hemolysis is blocked. Calreticulin may affect perforin at the erythrocyte membrane. We observed calcium-dependent binding of calreticulin to erythrocyte membranes with a Kd of 2.7 x 10(-7) M and a saturation average of 10(5) molecules calreticulin per erythrocyte. At concentrations that blocked hemolysis, calreticulin occupied many of the calreticulin membrane-binding sites and was in molar excess of perforin. These observations open the possibilities that membrane-bound calreticulin prevents hydrophobic entry of perforin into membranes and (or) prevents perforin from assembling into polyperforin pores.  相似文献   

7.
A good conformity if demonstrated of the kinetics of calcium ions effect on ATPase activity of human and rat erythrocyte ghosts. The increase of calcium concentration in the rat errythrocytes hemolysis medium (above 50-100 micrometer) results in a considerable aggregation of reconstructed vesicles. An activation of ouabaine-sensitive component of Mg2+-dependent ATPase under the increase of intracellular Ca2+ in reconstructed human erythrocytes is observed.  相似文献   

8.
The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation.  相似文献   

9.
In the present work we studied the effect of antioxidants of the SkQ1 family (10-(6′-plastoquinonyl)decyltriphenylphosphonium) on the oxidative hemolysis of erythrocytes induced by a lipophilic free radical initiator 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN) and a water-soluble free radical initiator 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). SkQ1 was found to protect erythrocytes from hemolysis, 2 μM being the optimal concentration. Both the oxidized and reduced SkQ1 forms exhibited protective properties. Both forms of SkQ1 also inhibited lipid peroxidation in erythrocytes induced by the lipophilic free radical initiator AMVN as detected by accumulation of malondialdehyde. However, in the case of induction of erythrocyte oxidation by AAPH, the accumulation of malondialdehyde was not inhibited by SkQ1. In the case of AAPH-induced hemolysis, the rhodamine-containing analog SkQR1 exerted a comparable protective effect at the concentration of 0.2 μM. At higher SkQ1 and SkQR1 concentrations, the protective effect was smaller, which was attributed to the ability of these compounds to facilitate hemolysis in the absence of oxidative stress. We found that plastoquinone in the oxidized form of SkQ1 could be reduced by erythrocytes, which apparently accounted for its protective action. Thus, the protective effect of SkQ in erythrocytes, which lack mitochondria, proceeded at concentrations that are two to three orders of magnitude higher than those that were active in isolated mitochondria.  相似文献   

10.
Human erythrocytes transformed leukotriene A4 into leukotriene B4. Metabolism was proportional to the erythrocyte concentration, even at subphysiological levels (0.08-4 X 10(9) erythrocytes/ml). Comparative metabolic studies excluded the possibility that leukotriene B4 originated from trace amounts of polymorphonuclear leukocytes or platelets present in the purified erythrocyte suspensions. For example, suspensions of isolated platelets (100-500 X 10(6) cells/ml) failed to convert leukotriene A4 into leukotriene B4; and conversion by suspensions of isolated polymorphonuclear neutrophils was insufficient to account for the amounts of leukotriene B4 formed by erythrocytes. Leukotriene B4 formation was maximal within 2 min and substrate concentration dependent. Enzymatic activity originated from a 56 degrees C labile nondialyzable (Mr greater than 30,000) soluble component in the 100,000 X g supernatant obtained from lysed erythrocytes. In contrast to the contemporary view, our results indicate that human erythrocytes are not metabolically inert in terms of eicosanoid biosynthesis. The role of human erythrocytes during inflammatory or pulmonary disorders deserves re-examination in this context.  相似文献   

11.
The bioimpedance spectroscopy (BIS) parameters of the suspensions of young and old erythrocytes were studied. The separation of the erythrocytes by age was made by density gradient. The BIS parameters: extracellular (Re) and intracellular (Ri) fluid resistance, characteristic frequency (Fchar), cell membranes capacitance (Cm) and Alpha parameter of concentrate suspensions of young and old erythrocytes were measured on the BIA analyzer ABC-01 "Medass" in the frequency range 5-500 kHz. It was found that Re (300.4 +/- 30.0 Ohm and 261.2 +/- 21.8 Ohm for old and young respectively, p < 0.05), Ri (86.6 +/- 9.1 Ohm and 73.4 +/- 7.3 Ohm for old and young respectively, p < 0.001) and Alpha (0.305 +/- 0.003 and 0.302 +/- 0.001 for old and young respectively, p < 0.05) of the old erythrocytes suspensions were higher, than of the young one, and Fchar (308.3 +/- 42.0 kHz and 347.4 +/- 48.0 kHz for old and young respectively, p <0.05) and Cm (99.3 +/- 10.1 pF and 112.8 +/- 6.3 pF for old and young respectively, p < 0.01) of the old erythrocytes were lower, than of the young one. The found differences between electrical properties of the suspensions of young and old erythrocytes were obviously determined by the alterations of the red blood cells during aging (growth of intracellular hemoglobin concentration, erythrocytes rapprochement because of diminishing of surface negative charge, increase of red blood cell sphericity and cell membrane permeability for ions). Thus the BIS parameters are related to the erythrocyte aging.  相似文献   

12.
Mechanical properties of erythrocyte membranes play an important role in red cell functions. Stability of human erythrocytes under deforming mechanical tensions which occur in the rapidly moving fluid is studied. The activation energy of the mechanical hemolysis determined by the temperature dependence of the hemolysis rate is 55 + 7 kJ/mol. The fragility of erythrocytes rises sharply as the salt concentrations increase. Glutaric dialdehyde forms a certain number of interprotein bonds which increase the fragility of erythrocytes. The mechanical stability of the erythrocyte membrane falls at high (0.5 M) ethanol concentrations. Blood plasma proteins, particularly human serum albumin, have a pronounced stabilizing effect. The hemolysis occurring during the rapid mixing is not probably associated with an osmotic mechanism since high sucrose concentrations do not prevent this process. The mechanical hemolysis depends both on the deforming tension arising in the membrane and on the state of the erythrocyte membrane.  相似文献   

13.
Erythrocytes from rats fed large doses of Vitamin A alone, or large doses of vitamin A and vitamin E or diphenyl-p-phenylene diamine (DPPD) were studied for H2O2-induced hemolysis. The vitamin A-dosed rats were more susceptible than normal rats to H2O2-induced hemolysis. Hemolysis was not accompanied by lipid peroxidation. Nevertheless, the antioxidants vitamin E and DPPD inhibited hemolysis in erythrocytes from vitamin A-dosed rats. These antioxidants had the same inhibitory effect when they were included in the diet or added to erythrocyte suspensions in vitro. Erythrocytes from vitamin A-dosed rats with or without added vitamin E or DPPD were less susceptible than the erythrocytes from normal rats to osmotic challenge, showing that vitamin A was present in levels sufficient to alter the structure of the erythrocyte membrane. These studies show that oxidative hemolysis occurs when the erythrocyte membrane is modified. Furthermore, this oxidative hemolysis is unrelated to lipid peroxidation.  相似文献   

14.
R Walls  P Hochstein 《Life sciences》1974,15(10):1757-1763
G-6-PD deficient erythrocytes undergo hemolysis during exposure to hydrogen peroxide and thyroxine. Normal erythrocytes do not show this effect unless incubated in the absence of glucose. The inability of G-6-PD deficient cells to detoxify hydrogen peroxide apparently exposes them to the cytotoxic actions of thyroxine. It is suggested that the hemolysis and anemia associated with this genetic disorder is a consequence of the actions of both peroxide and thyroxine on erythrocyte membranes.  相似文献   

15.
Ditranol (1,8-dihydroxy-9-antrone) induced dark lysis of erythrocytes. After irradiation of the cells with UV-light (366 nm UV-A light) in the presence of ditranol (DUVA-effect) the hemolytic effect increases. It has been found that antioxidant butylated hydroxytoluene BHT in the concentration 10(-7) M did not affect the dark lysis, while with increased BHT concentration up to 10(-5) M the hemolytic effect of ditranol was intensified. The presence of BHT in the above concentration under DUVA-effect did not change the velocity of cell lysis. Sodium aside did not affect the dark hemolysis of ditranol, but it inhibited photosensitized hemolysis.  相似文献   

16.
Measurements were made of the viscosity of suspensions of synthetic erythrocytes composed of hemoglobin solutions encapsulated in liposomes, as a function of shear rate, temperature, suspension concentration, lipid membrane composition, and the viscosity of the suspending medium. It was found that the viscous behavior of the synthetic erythrocyte suspensions was non-Newtonian and nearly the same as that of suspensions of natural erythrocytes prepared similarly, with the major difference being that synthetic erythrocyte suspensions are somewhat more viscous. Suspensions of Fluosol FC-43 prepared similarly were found to be essentially Newtonian fluids, and substantially different and more viscous than either erythrocyte suspension. The higher viscosity of synthetic erythrocyte suspensions probably accounts for the ability of these suspensions to maintain normal systemic vascular resistance in transfusion experiments, in spite of the fact that synthetic erythrocytes are smaller than natural erythrocytes.  相似文献   

17.
The influence of central cholinolytics and adrenoblocking drugs on the hemolysis of rat erythrocytes in the hypoosmotic buffer was studied in vitro. At pH 7.4 in a concentration of 10(-4) M central cholinolytics ethyl-dipracil, diphacil, pediphen, tropacin, and beta-adrenoblocking agent propranolol protected the erythrocytes from hemolysis most intensively. The central M-cholinlytics amizyl, glypin, and alpha-adrenoblocking agents purroxan, sympatholytin, phentolamin were less active. The antihemolytic effect of drugs reached the maximum in the course of 30 minutes, and was maintained for several hours. The protection of erythrocytes from hemolysis by drugs containing tertiary nitrogen was greater. Prevention of the hypoosmotic hemolysis pointed to the stabilization of the erythrocyte membrane by the preparations examined. In the mechanism of action of the central N-cholinolytics and beta-adrenoblocking drugs it is necessary to consider the possibility of stabilization of the membrane formations containing no synaptic contacts.  相似文献   

18.
Fish erythrocytes were used to elucidate the effect of zinc ions on the cell antioxidant defence system. It was detected that an increase of the Zn2+ concentration (0.01-1 mM) leads to a marked decrease (p < 0.05) in the catalase and the glutathione peroxidase activities. We observed a loss of 14-39% activity of glutathione peroxidase, and 16-20% diminution for catalase. No significant changes were found in case of the superoxide dismutase. Incubation of red blood cells with zinc brought about a decrease of the erythrocyte thiol group content. Treatment of carp erythrocytes with zinc ions also resulted in enhanced hemolysis and in the induction of significant (p < 0.001) changes in the intracellular glucose level. The increase of glucose concentration in the erythrocytes was correlated with increased concentration of metal in the incubation medium. It was proposed that Zn could affect transport systems across the red blood cells and therefore increased the permeability of the membranes to small molecules (e.g. hexose), and led to hemolysis. Zinc ions could act as a potential cell toxicant, leading to disturbances in functions of the antioxidant defence system and to alterations in the erythrocyte membrane properties.  相似文献   

19.
Valinomycin and salinomycin-Na, 2 ionophorous antibiotics, exhibited in vitro antibabesial activities against Babesia gibsoni that infected normal canine erythrocytes containing low potassium (LK) and high sodium concentrations, i.e., LK erythrocytes, which completely lack Na,K-ATPase activity. The level of parasitemia of B. gibsoni was significantly decreased when the parasites were incubated in culture medium containing either 10(-1) ng/ml valinomycin or 10(2) ng/ml salinomycin-Na for 24 hr. Four-hour incubation in the culture medium containing 5 μg/ml salinomycin-Na led to the destruction of most parasites. In contrast, when the parasites infected canine erythrocytes containing high potassium (HK) and low sodium concentrations, i.e., HK erythrocytes, the in vitro antibabesial activities of both ionophorous antibiotics seemed to be weakened, apparently due to the protection by the host cells. Therefore, differential influences of ionophorous antibiotics on LK and HK erythrocytes were observed. In LK erythrocytes, the intracellular concentrations of potassium, sodium, and adenosine triphosphate (ATP) were not modified, and hemolysis was not observed after incubation in the medium containing each ionophorous antibiotic. These results suggested that these ionophorous antibiotics did not affect cells without Na,K-ATPase, and directly affected B. gibsoni. In HK erythrocytes, the ionophorous antibiotics increased the intracellular sodium concentration, and decreased the intracellular potassium and ATP concentrations, causing obvious hemolysis. Additionally, the decrease of the intracellular ATP concentration and the hemolysis in HK erythrocytes caused by valinomycin disappeared when the activity of Na,K-ATPase was inhibited by ouabain. These results indicate that modification of the intracellular cation concentrations by the ionophorous antibiotics led to the activation of Na,K-ATPase and increased consumption of intracellular ATP, and that the depletion of intracellular ATP resulted in hemolysis in HK erythrocytes. Moreover, the antibabesial activity of valinomycin disappeared when B. gibsoni in LK erythrocytes were incubated in culture media containing high potassium concentrations. This showed that the intracellular cation concentration in the parasites was not modified in those media and would remain the same.  相似文献   

20.
Calcium ions inhibited perfringolysin O-induced hemolysis at a concentration lower than 1 mM, but not the hemolysis by digitonin at 10 mM. The introduction of calcium ions into ghosts inhibited the lysis more strongly than the addition of calcium ions outside ghosts. When erythrocytes were treated with perfringolysin O in the presence of 1 mM CaCl2 containing 45CaCl2, the radioactivities inside cells rapidly increased during incubation. On the other hand, when perfringolysin O-treated erythrocytes were incubated in a calcium-free medium, the erythrocytes released calcium ions at a 3.3-fold higher rate than untreated cells. These results suggested that perfringolysin O accelerated both the calcium influx into and efflux from erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号