首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Two distinct dendritic cell (DC) subpopulations have been evidenced in mice on the basis of their differential CD8alpha expression and their localization in lymphoid organs. Several reports suggest that CD8alpha(+) and CD8alpha(-) DC subsets could be functionally different. In this study, using a panel of MHC class I- and/or class II-restricted peptides, we analyzed CD4(+) and CD8(+) T cell responses obtained after i.v. injection of freshly purified peptide-pulsed DC subsets. First, we showed that both DC subsets efficiently induce specific CTL responses and Th1 cytokine production in the absence of CD4(+) T cell priming. Second, we showed that in vivo activation of CD4(+) T cells by CD8alpha(+) or CD8alpha(-) DC, injected i.v., leads to a nonpolarized Th response with production of both Th1 and Th2 cytokines. The CD8alpha(-) subset induced a higher production of Th2 cytokines such as IL-4 and IL-10 than the CD8alpha(+) subset. However, IL-5 was produced by CD4(+) T cells activated by both DC subsets. When both CD4(+) and CD8(+) T cells were primed by DC injected i.v., a similar pattern of cytokines was observed, but, under these conditions, Th1 cytokines were mainly produced by CD8(+) T cells, while Th2 cytokines were produced by CD4(+) T cells. Thus, this study clearly shows that CD4(+) T cell responses do not influence the development of specific CD8(+) T cell cytotoxic responses induced either by CD8alpha(+) or CD8alpha(-) DC subsets.  相似文献   

2.
CD1d-restricted invariant natural killer T (iNKT) cells have diverse immune stimulatory/regulatory activities through their ability to release cytokines and to kill or transactivate other cells. Activation of iNKT cells can protect against multiple diseases in mice but clinical trials in humans have had limited impact. Clinical studies to date have targeted polyclonal mixtures of iNKT cells and we proposed that their subset compositions will influence therapeutic outcomes. We sorted and expanded iNKT cells from healthy donors and compared the phenotypes, cytotoxic activities and cytokine profiles of the CD4(+), CD8α(+) and CD4(-)CD8α(-) double-negative (DN) subsets. CD4(+) iNKT cells expanded more readily than CD8α(+) and DN iNKT cells upon mitogen stimulation. CD8α(+) and DN iNKT cells most frequently expressed CD56, CD161 and NKG2D and most potently killed CD1d(+) cell lines and primary leukemia cells. All iNKT subsets released Th1 (IFN-γ and TNF-α) and Th2 (IL-4, IL-5 and IL-13) cytokines. Relative amounts followed a CD8α>DN>CD4 pattern for Th1 and CD4>DN>CD8α for Th2. All iNKT subsets could simultaneously produce IFN-γ and IL-4, but single-positivity for IFN-γ or IL-4 was strikingly rare in CD4(+) and CD8α(+) fractions, respectively. Only CD4(+) iNKT cells produced IL-9 and IL-10; DN cells released IL-17; and none produced IL-22. All iNKT subsets upregulated CD40L upon glycolipid stimulation and induced IL-10 and IL-12 secretion by dendritic cells. Thus, subset composition of iNKT cells is a major determinant of function. Use of enriched CD8α(+), DN or CD4(+) iNKT cells may optimally harness the immunoregulatory properties of iNKT cells for treatment of disease.  相似文献   

3.
Salmonella typhimurium is an intracellular bacterium that replicates in the spleen and mesenteric lymph nodes (MLN) of orally infected mice. However, little is known about the Ag presentation and cytokine production capacity of dendritic cells (DC), particularly CD8alpha(+), CD8alpha(-)CD4(-), and CD8alpha(-)CD4(+) DC, from these organs in response to SALMONELLA: Infection of purified splenic DC with S. typhimiurium expressing green fluorescent protein (GFP) and OVA revealed that all three splenic DC subsets internalize bacteria, and splenic as well as MLN DC process Salmonella for peptide presentation. Furthermore, presentation of Salmonella Ags on MHC-I and MHC-II was evident in both CD8alpha(+) and CD8alpha(-) splenic DC subsets. Direct ex vivo analysis of splenic DC from mice infected with GFP-expressing Salmonella showed that all three subsets harbored bacteria, and splenic DC purified from mice given Salmonella-expressing OVA presented OVA-derived peptides on MHC-I and MHC-II. Cytokine production analyzed by intracellular staining of splenic DC infected with GFP-expressing Salmonella revealed that TNF-alpha was produced by a large percentage of CD8alpha(-) DC, while only a minor proportion of CD8alpha(+) DC produced this cytokine following bacterial exposure. In contrast, the greatest number of IL-12p40-producing DC were among CD8alpha(+) DC. Experiments inhibiting bacterial uptake by cytochalasin D as well as use of a Transwell system revealed that bacterial contact, but not internalization, was required for cytokine production. Thus, DC in sites of Salmonella replication and T cell activation, spleen and MLN, respond to bacterial encounter by Ag presentation and produce cytokines in a subset-specific fashion.  相似文献   

4.
5.
We recently reported that splenic dendritic cells (DC) in rats can be separated into CD4(+) and CD4(-) subsets and that the CD4(-) subset exhibited a natural cytotoxic activity in vitro against tumor cells. Moreover, a recent report suggests that CD4(-) DC could have tolerogenic properties in vivo. In this study, we have analyzed the phenotype and in vitro T cell stimulatory activity of freshly isolated splenic DC subsets. Unlike the CD4(-) subset, CD4(+) splenic DC expressed CD5, CD90, and signal regulatory protein alpha molecules. Both fresh CD4(-) and CD4(+) DC displayed an immature phenotype, although CD4(+) cells constitutively expressed moderate levels of CD80. The half-life of the CD4(-), but not CD4(+) DC in vitro was extremely short but cells could be rescued from death by CD40 ligand, IL-3, or GM-CSF. The CD4(-) DC produced large amounts of the proinflammatory cytokines IL-12 and TNF-alpha and induced Th1 responses in allogeneic CD4(+) T cells, whereas the CD4(+) DC produced low amounts of IL-12 and no TNF-alpha, but induced Th1 and Th2 responses. As compared with the CD4(+) DC that strongly stimulated the proliferation of purified CD8(+) T cells, the CD4(-) DC exhibited a poor CD8(+) T cell stimulatory capacity that was substantially increased by CD40 stimulation. Therefore, as previously shown in mice and humans, we have identified the existence of a high IL-12-producing DC subset in the rat that induces Th1 responses. The fact that both the CD4(+) and CD4(-) DC subsets produced low amounts of IFN-alpha upon viral infection suggests that they are not related to plasmacytoid DC.  相似文献   

6.
Dendritic cells (DC) are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+) T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+) T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+) and CD8(+) T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+) and CD4(+) T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+) T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+) T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+) T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.  相似文献   

7.
We have recently demonstrated the presence of three populations of dendritic cells (DC) in the murine Peyer's patch. CD11b(+)/CD8alpha(-) (myeloid) DCs are localized in the subepithelial dome, CD11b(-)/CD8alpha(+) (lymphoid) DCs in the interfollicular regions, and CD11b(-)/CD8alpha(-) (double-negative; DN) DCs at both sites. We now describe the presence of a novel population of intraepithelial DN DCs within the follicle-associated epithelium and demonstrate a predominance of DN DCs only in mucosal lymphoid tissues. Furthermore, we demonstrate that all DC subpopulations maintain their surface phenotype upon maturation in vitro, and secrete a distinct pattern of cytokines upon exposure to T cell and microbial stimuli. Only myeloid DCs from the PP produce high levels of IL-10 upon stimulation with soluble CD40 ligand(-) trimer, or Staphylococcus aureus and IFN-gamma. In contrast, lymphoid and DN, but not myeloid DCs, produce IL-12p70 following microbial stimulation, whereas no DC subset produces IL-12p70 in response to CD40 ligand trimer. Finally, we show that myeloid DCs from the PP are particularly capable of priming naive T cells to secrete high levels of IL-4 and IL-10, when compared with those from nonmucosal sites, while lymphoid and DN DCs from all tissues prime for IFN-gamma production. These findings thus suggest that DC subsets within mucosal tissues have unique immune inductive capacities.  相似文献   

8.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

9.
Dendritic cells (DCs) regulate the development of distinct Th populations and thereby provoke appropriate immune responses to various kinds of Ags. In the present work, we investigated the role CD40-CD154 interactions play during the process of Th cell priming by CD8 alpha(+) and CD8 alpha(-) murine DC subsets, which have been reported to differently regulate the Th response. Adoptive transfer of Ag-pulsed CD8 alpha(+) DCs induced a Th1 response and the production of IgG2a Abs, whereas transfer of CD8 alpha(-) DCs induced Th2 cells and IgE Abs in vivo. Induction of distinct Th populations by each DC subset was also confirmed in vitro. Although interruption of CD80/CD86-CD28 interactions inhibited Th cell priming by both DC subsets, disruption of CD40-CD154 interactions only inhibited the induction of the Th1 response by CD8 alpha(+) DCs in vivo. CD40-CD154 interactions were not required for the proliferation of Ag-specific naive Th cells stimulated by either DC subset, but were indispensable in the production of IL-12 from CD8 alpha(+) DCs and their induction of Th1 cells in vitro. Taken together, in our immunization model of Ag-pulsed DC transfer, CD40-CD154 interactions play an important role in the development of CD8 alpha(+) DC-driven Th1 responses but not CD8 alpha(-) DC-driven Th2 responses to protein Ags.  相似文献   

10.
11.
An increasing number of studies suggest that individual subsets of dendritic cells (DC) exhibit distinct capabilities with regard to the generation of the adaptive immune response. In this study, we evaluated the properties of a relatively unexplored DC subset present in the lung-draining mediastinal lymph node. This subset expresses the airway dendritic cell marker CD103 together with CD8. These DC were of interest given that our previous studies using a model of respiratory infection with vaccinia virus revealed a distinct difference in the ability of CD103(+) DC to prime T cells that correlated inversely with the expression of CD8, suggesting a differential role of these DC in the context of respiratory virus infection. To expand our understanding of the role of this DC population, we performed analyses to elucidate the phenotype, migratory capacity, responsiveness to innate stimuli, and priming capacity of CD8(+) CD103(+) DC. We found that expression of surface markers on these DC was similar to that of CD8(-) CD103(+) DC, supporting their close relationship. Further, the two DC types were similar with regard to antigen uptake. However, although both CD103(+) subsets originated from the lung, CD8-bearing CD103(+) DC appeared in the lymph node with delayed kinetics following virus infection. While this subset exhibited increased responsiveness to a number of Toll-like receptor (TLR) agonists, their response to infection was virus specific, demonstrating poor responsiveness to vaccinia virus infection but robust maturation following infection with parainfluenza virus 5 or influenza virus. These findings show that CD8 marks a population of lung airway-derived DC with distinct migratory and maturation responses that likely contribute differentially to the immune response depending on the infecting pathogen.  相似文献   

12.
Recent studies have demonstrated that both mouse and human alpha beta TCR(+)CD3(+)NK1.1(-)CD4(-)CD8- double-negative regulatory T (DN Treg) cells can suppress Ag-specific immune responses mediated by CD8+ and CD4+ T cells. To identify molecules involved in DN Treg cell function, we generated a panel of murine DN Treg clones, which specifically kill activated syngeneic CD8+ T cells. Through serial cultivation of DN Treg clones, mutant clones arose that lost regulatory capacity in vitro and in vivo. Although all allogeneic cardiac grafts in animals preinfused with tolerant CD4/CD8 negative 12 DN Treg clones survived over 100 days, allograft survival is unchanged following infusion of mutant clones (19.5 +/- 11.1 days) compared with untreated controls (22.8 +/- 10.5 days; p < 0.001). Global gene expression differences between functional DN Treg cells and nonfunctional mutants were compared. We found 1099 differentially expressed genes (q < 0.025%), suggesting increased cell proliferation and survival, immune regulation, and chemotaxis, together with decreased expression of genes for Ag presentation, apoptosis, and protein phosphatases involved in signal transduction. Expression of 33 overexpressed and 24 underexpressed genes were confirmed using quantitative real-time PCR. Protein expression of several genes, including Fc epsilon RI gamma subunit and CXCR5, which are >50-fold higher, was also confirmed using FACS. These findings shed light on the mechanisms by which DN Treg cells down-regulate immune responses and prolong cardiac allograft survival.  相似文献   

13.
Previous studies of perforin expression and cytokine production in subsets of peripheral human CD45RA(-)CD8(+) T cells with different CD28/CD27 phenotypes showed that CD28(+)CD45RA(-)CD8(+) and CD27(+)CD45RA(-)CD8(+) T cells have characteristics of memory T cells, whereas CD28(-)CD45RA(-)CD8(+) and CD27(-)CD45RA(-)CD8(+) T cells have characteristics of both memory and effector T cells. However, the differentiation pathway from memory CD8(+) T cells into memory/effector CD8(+) T cells has not been completely clarified. We investigated this differentiation pathway using EBV- and human CMV (HCMV)-specific CD8(+) T cells. Three subsets of CD45RA(-)CD8(+) T cells were observed in both total CD8(+) T cells and EBV- or HCMV-specific CD8(+) T cells: CD27(+)CD28(+), CD27(+)CD28(-), and CD27(-)CD28(-). A significant number of the CD27(-)CD28(+) subset was observed in total CD8 T cells. However, this subset was barely detectable in EBV- or HCMV-specific CD8(+) T cells. Analysis of perforin expression and cytotoxic activity in the first three subsets suggested the following differentiation pathway: CD27(+)CD28(+)CD45RA(-)-->CD27(+)CD28(-)CD45RA(-)-->CD27(-)CD28(-)CD45RA(-). This was supported by the observation that the frequency of CCR5(+) cells and CCR7(+) cells decreased during this sequence. Analysis of CCR5 and CCR7 expression in the CD27(+)CD28(+) memory cell subset demonstrated the presence of three CCR5/CCR7 populations: CCR5(-)CCR7(+), CCR5(+)CCR7(+), and CCR5(+)CCR7(-). These findings suggested the following differentiation pathway: CD27(+)CD28(+)CD45RA(-) (CCR5(-)CCR7(+)-->CCR5(+)CCR7(+)-->CCR5(+)CCR7(-))-->CD27(+)CD28(-)CD45RA(-)-->CD27(-)CD28(-)CD45RA(-). The presence of a CD27(-)CD28(+) subset with a CCR5(+)CCR7(-) phenotype implies a specialized role for this subset in the differentiation of CD8(+) T cells.  相似文献   

14.
Dendritic cells (DC) not only stimulate T cells effectively but are also producers of cytokines that have important immune regulatory functions. In this study we have extended information on the functional differences between DC subpopulations to include differences in the production of the major immune-directing cytokines IL-12, IFN-alpha, and IFN-gamma. Splenic CD4(-)8(+) DC were identified as the major IL-12 producers in response to microbiological or T cell stimuli when compared with splenic CD4(-)8(-) or CD4(+)8(-) DC; however, all three subsets of DC showed similar IL-12 regulation and responded with increased IL-12 p70 production if IL-4 was present during stimulation. High level CD8 expression also correlated with extent of IL-12 production for DC isolated from thymus and lymph nodes. By using gene knockout mice we ruled out any role for CD8alpha itself, or of priming by T cells, on the superior IL-12-producing capacity of the CD8(+) DC. Additionally, CD8(+) DC were identified as the major producers of IFN-alpha compared with the two CD8(-) DC subsets, a finding that suggests similarity to the human plasmacytoid DC lineage. In contrast, the CD4(-)8(-) DC produced much more IFN-gamma than the CD4(-)8(+) or the CD4(+)8(-) DC under all conditions tested.  相似文献   

15.
A normalized subtracted gene expression library was generated from freshly isolated mouse dendritic cells (DC) of all subtypes, then used to construct cDNA microarrays. The gene expression profiles of the three splenic conventional DC (cDC) subsets were compared by microarray hybridization and two genes encoding signal regulatory protein beta (Sirpbeta1 and Sirpbeta4) molecules were identified as differentially expressed in CD8(-) cDC. Genomic sequence analysis revealed a third Sirpbeta member localized in the same gene cluster. These Sirpbeta genes encode cell surface molecules containing extracellular Ig domains and short intracytoplasmic domains that have a charged amino acid in the transmembrane region which can potentially interact with ITAM-bearing molecules to mediate signaling. Indeed, we demonstrated interactions between Sirpbeta1 and beta2 with the ITAM-bearing signaling molecule Dap12. Real-time PCR analysis showed that all three Sirpbeta genes were expressed by CD8(-) cDC, but not by CD8(+) cDC or plasmacytoid pre-DC. The related Sirpalpha gene showed a similar expression profile on cDC subtypes but was also expressed by plasmacytoid pre-DC. The differential expression of Sirpalpha and Sirpbeta1 molecules on DC was confirmed by staining with mAbs, including a new mAb recognizing Sirpbeta1. Cross-linking of Sirpbeta1 on DC resulted in a reduction in phagocytosis of Leishmania major parasites, but did not affect phagocytosis of latex beads, perhaps indicating that the regulation of phagocytosis by Sirpbeta1 is a ligand-dependent interaction. Thus, we postulate that the differential expression of these molecules may confer the ability to regulate the phagocytosis of particular ligands to CD8(-) cDC.  相似文献   

16.
The developmental pathways and differentiation relationship of dendritic cell (DC) subsets remain unclear. We report that murine CD11c(+)MHC II(-) bone marrow cells, which are immediate DC precursors of CD8 alpha(+), CD8 alpha(-), and B220(+) DC in vivo, can be separated into B220(+) and B220(-) DC precursor subpopulations. Purified B220(-) DC precursors expand, and generate exclusively mature CD11c(+)CD11b(+)B220(-) DC in vitro and after adoptive transfer. B220(+) DC precursors, which resemble plasmacytoid pre-DC, have a lower proliferative potential than B220(-) DC precursors and generate both CD11b(-) B220(+) and CD11b(+)B220(-) DC populations. Both DC precursor populations can give rise to CD8 alpha(+) and CD8 alpha(-) DC subtypes. Our findings indicate that CD11c(+)MHC II(-)B220(+) and CD11c(+)MHC II(-)B220(-) bone marrow cells are distinct DC lineage-restricted precursors.  相似文献   

17.
18.
19.
We have identified in the rat a new subset of MHC class II(+) CD4(+)CD3(-)CD11b(-) leukocytes that produce high amounts of type I IFN upon viral stimulation and that appeared homologous to plasmacytoid DC (pDC) previously described in humans and mice. These cells exhibited the following phenotype: CD5(+),CD90(+),CD45R(+),CD45RC(+),CD11c(-),CD161a(+),CD200(+),CD172a(+),CD32(+),CD86(+). Rat pDC did not express the DC-specific marker OX62 and were more abundant in the spleen than the classical CD4(+) and CD4(-) subsets of OX62(+)CD11b(+) DC we previously described that produced very little, if any, type I IFN. Spleen pDC exhibited an undifferentiated morphology and rapidly died in vitro, but showed extensive dendrite formation, survival, maturation, and moderate type I IFN production upon stimulation by oligonucleotides containing type B CpG motifs (CpG ODN). Type A CpG ODN and CD40 ligand induced pDC to produce large amounts of type I IFN, but did not promote maturation. CpG ODN and CD40 ligand, but not influenza virus, induced IL-12p40 and IL-6 secretion. Spleen pDC did not produce IL-12p70, TNF-alpha, IL-1beta, or IL-10 using these stimulation conditions. Correlating with their strong responsiveness to virus and CpG ODN, rat pDC specifically expressed Toll-like receptor 7 and 9 mRNA. Fresh spleen pDC were poor stimulators of allogenic CD4(+) and CD8(+) T cells, but became potent inducers of allogenic T cell proliferation as well as Th1 differentiation after stimulation by type B CpG. Therefore, rat pDC appear very similar to human pDC, indicating that the specific phenotype and functions of pDC have been highly conserved between species.  相似文献   

20.
Dendritic cells (DC) can produce Th-polarizing cytokines and direct the class of the adaptive immune response. Microbial stimuli, cytokines, chemokines, and T cell-derived signals all have been shown to trigger cytokine synthesis by DC, but it remains unclear whether these signals are functionally equivalent and whether they determine the nature of the cytokine produced or simply initiate a preprogrammed pattern of cytokine production, which may be DC subtype specific. Here, we demonstrate that microbial and T cell-derived stimuli can synergize to induce production of high levels of IL-12 p70 or IL-10 by individual murine DC subsets but that the choice of cytokine is dictated by the microbial pattern recognition receptor engaged. We show that bacterial components such as CpG-containing DNA or extracts from Mycobacterium tuberculosis predispose CD8alpha(+) and CD8alpha(-)CD4(-) DC to make IL-12 p70. In contrast, exposure of CD8alpha(+), CD4(+) and CD8alpha(-)CD4(-) DC to heat-killed yeasts leads to production of IL-10. In both cases, secretion of high levels of cytokine requires a second signal from T cells, which can be replaced by CD40 ligand. Consistent with their differential effects on cytokine production, extracts from M. tuberculosis promote IL-12 production primarily via Toll-like receptor 2 and an MyD88-dependent pathway, whereas heat-killed yeasts activate DC via a Toll-like receptor 2-, MyD88-, and Toll/IL-1R domain containing protein-independent pathway. These results show that T cell feedback amplifies innate signals for cytokine production by DC and suggest that pattern recognition rather than ontogeny determines the production of cytokines by individual DC subsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号